
www.manaraa.com

COMPUTER SCIENCE EDUCATION:

SECURE SOFTWARE

By

JAMES FRANCIS CAIN III

Bachelor of Science in Electrical Engineering
University of Missouri - Rolla

Rolla, Missouri
1996

Master of Science in Computer Science

University of Missouri - Rolla
Rolla, Missouri

1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 2010

www.manaraa.com

UMI Number: 3443364

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3443364

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

ii

COMPUTER SCIENCE EDUCATION:

SECURE SOFTWARE

 Dissertation Approved:

 Dr. Blayne E. Mayfield

 Dissertation Adviser

 Dr. John Chandler

 Dr. George E. Hedrick

 Dr. Marilyn Kletke

 Outside Committee Member

 Dr. Mark E. Payton

 Dean of the Graduate College

www.manaraa.com

iii

ACKNOWLEDGMENTS

The author would like to thank several groups and many individuals for their support and
encouragement, far too many for the author to be able to name all who rightly deserve to be
mentioned. The author’s friends, family, colleagues, employer, supervisors, and professors all
deserve immense thanks; the author would never have completed this doctoral program without
their incredible assistance. A number of the author’s students, including all those who consented
to participate in the human subject research, also deserve thanks for supporting and encouraging
even as the author’s studies influenced and impacted their own studies.

A few individuals must be named for particular assistance, though. Dr. Blayne Mayfield, Dr.
George Hedrick, Dr. John Chandler, and Dr. Marilyn Kletke all provided immeasurable
assistance with laying the foundations for this dissertation and then focusing the author’s research
as members of the author’s committee. Dr. Tim DeClue, Prof. Jeff Kimball, and Dr. Baochuan
Lu provided tremendous support in reducing the author's workload during the research and the
writing of the dissertation. The late Dr. Bill Warde served as a consultant for statistical methods
to analyze the survey data. Dr. Troy Bethards served as a consultant for related business theory.
Milton Austin, one of the author’s best friends and fellow OSU CS graduate student, worked
tirelessly as a sounding board for eight years of the author’s brainstorming. Carissa Barker, the
grammatical editor for the first draft of the dissertation, deserves recognition as well; may she
someday recover from reading such poor grammar and may she someday forgive the author for
all the mistakes he made in the subsequent revisions.

Finally, the author frequently has been heard to say over the past several years “Lord willing, I
will yet finish this doctorate… before it finishes me!” Well, it is just about finished, so let the last
but most important credit go to where it is most significantly due: thank you Lord!

www.manaraa.com

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..7

 Section 1: Problem Overview ..7
 Section 2: Historical Academic Approaches to Computer Security11
 Section 2.1: Information Security ..12
 Section 2.2: Network Security ...18
 Section 2.3: System Security ...21
 Section 2.4: Code Security ...25
 Section 2.5: Computer Security for Non-Majors ...34
 Section 3: Industry’s Buggy Code Theory...37
 Section 3.1: Security-Aware Compilers to Combat Security Bugs38
 Section 3.2: Better Education to Combat Security Bugs40
 Section 4: Current Theories on Security in the Computer Science Curriculum42
 Section 4.1: Security Required in the Core Curriculum43
 Section 4.2: Security Early in the Curriculum ...45
 Section 4.3: Security Throughout the Curriculum ...47
 Section 4.4: Ethical Hacking Courses ..49
 Section 5: Related Educational Theory..54
 Section 6: Related Business Theory ..56

III. METHODOLOGY ..59

IV. FINDINGS ...64

 Section 1: Anticipated Findings ...64
 Section 2: Actual Findings ...66

www.manaraa.com

v

Chapter Page

V. FUTURE WORK ..75

 Section 1: Future Work in Code Security ..75
 Section 2: Future Work in Computer Science Curriculum77

VI. CONCLUSION..81

REFERENCES ..84

APPENDICES ...93

 Appendix A: Informational Script on Human Subject Research93
 Appendix B: Informational Handout on Human Subject Research95
 Appendix C: Survey Instrument ..98
 Appendix D: Course Syllabus ..104
 Appendix E: Revised Course Schedule ...107
 Appendix F: Program 3 Starter Code...108
 Appendix G: Program 4 Starter Code ..110
 Appendix H: Program 5 Starter Code ..111
 Appendix I: Survey Data ...112

www.manaraa.com

vi

LIST OF TABLES

Table Page

 4.1: Pre-Test Results (Test Subjects vs Control Subjects)67
 4.2: Control Subject Results (Post-Test vs Pre-Test) ..68
 4.3: Test Subject Results (Post-Test vs Pre-Test) ...70
 4.4: Post-Test Results (Test Subjects vs Control Subjects)71
 4.5: Improvement of Results from Pre-Test to Post-Test
 (Test Subjects vs Control Subjects) ...72
 I.1: Pre-Test Control Subject Data ..113
 I.2: Pre-Test Test Subject Data ..114
 I.3: Post-Test Control Subject Data ...115
 I.4: Post-Test Test Subject Data ..117
 I.5: Answer Key and Unpaired Subject Data ..118

www.manaraa.com

1

CHAPTER I

INTRODUCTION

As the Internet has increased greatly, the means both to access and to distribute both code and

data, computer security problems have become significantly more rampant and problematic. The

Internet is not the cause of all of the individual security issues of the world’s computer systems; it

merely magnifies the scope of the problem and the rate at which these security threats spread.

Often the Internet, in fact, can help increase the awareness of security problems and increase the

rate at which solutions for known problems can be devised and disseminated.

Security problems come in three basic categories: policy-oriented, network-oriented, and system

specific. Policy-oriented problems are studied in detail within information security courses.

Network-oriented problems are examined during network security courses. Other system-specific

problems are studied throughout system security courses. All of these security problems have

two common characteristics: they are caused by people and many traditional attempts to solve

them have focused therefore on computer science education.

In computer science education, security continues to increase in importance due to continued

growth in computer use and computer intercommunications. Even though existing security

www.manaraa.com

2

problems continue to be solved, unless academia can continue to educate each successive

generation of students in security, these successive generations of students likely will replicate the

problems their predecessors already have solved. Education cannot prevent security problems

altogether, but it may reduce significantly the frequency and magnitude of future problems.

Currently, security problems are considered to be out of hand. Academia desperately needs to

take corrective measures now, for the sake of both the immediate and long term future. Industry

is already attempting to handle security issues through continuing education efforts in secure

coding in addition to more traditional areas of information security, network security, and system

security. It is based on this trend in industry that the author proposes an increased focus on

secure coding in computer science undergraduate programs.

The author proposes that all computer science undergraduates should begin this increased focus

in security immediately after they complete Computer Science I. This would be done through a

code-oriented secure software development course. The objectives of this course would be to

teach the importance of code security, to instruct in practical coding techniques for making

programs more secure, and to provide practice in these secure coding techniques. The proposed

course would teach students these secure coding techniques without introducing any significantly

more complex data structures or algorithms, leaving those topics for a traditional Computer

Science II course.

www.manaraa.com

3

There are two notable rebuttals to the author’s proposal. The first rebuttal is “Computer Science

is not programming!” Yet as Dr. Bjarne Stroustrup explains, this may be true at academia’s and

industry’s peril:

“I find that CS professors often overreact to the inaccurate popular image of the

software developer as a lonely guy with ‘no life’ hacking code all night. To

counter, they cry ‘Computer Science is not programming!’ That’s true of course,

but that reaction can lead to a serious weakening of programming skills as some

adopt the snobbish attitude ‘we don’t teach programming; we teach computer

science’ and leave practical software development skills untaught.” [67]

Unless academia chooses to require programming competence as a prerequisite for admission into

undergraduate computer science programs, programming must continue to be taught. This leads

to the second rebuttal, which states that today’s undergraduate curriculum already is overloaded.

It can be argued that the computer science curriculum does not have room for such an increase in

secure programming emphasis without some sort of corresponding decrease. The question of

what to decrease in order to offset this increase is outside the scope of this research.

Every software developer, from the initial architects to the maintenance staff, must understand

security. Not every software developer has to be an expert in security, but they all need to be

competent. One mistake alone can open up an entire system to serious vulnerability. The access

granted by today’s Internet and portable data storage devices requires developers to consider any

program on any computer system a potential security risk. A program that does not have security

in mind from the start of the design should be considered completely unacceptable. Likewise, a

buggy program written by a weak coder should be considered just as great of a risk. Both of

these problems are addressed by the author’s proposal.

www.manaraa.com

4

An alternative to adding a dedicated security course is to integrate security throughout the

computer science curriculum. Some even have suggested integrating security throughout each

computer science course rather than inserting it as a short section of each course [36, 45, 69, 75].

Some have shown how this might be done even in Computer Science I and claim to have

accomplished this without detracting from the course’s other content; however, it also has been

shown that Computer Science I already has accumulated many new topics over the years [21]. If

new topics continue to be added, it is only a matter of time before Computer Science I will

become so overloaded that it must be split into multiple courses or have the individual topics

further diluted each time a new topic is added.

A purely-integrated approach, where security is integrated into other courses but no single course

is dedicated to security, is not the only way by which security historically has been taught.

Academia has taught and continues to teach dedicated security courses to upper classmen and

graduate students. The author submits that a purely-integrated approach very well may be a grave

mistake. Students may misunderstand, and may believe that security is a topic of lesser

importance. A purely-integrated approach also may take time away from the traditional teaching

of programming fundamentals at the very beginning of the major.

If a student begins their study of security believing it is of lesser importance, because of its status

as a secondary topic in another course rather than being the primary topic of its own course, then

the student is less likely to pay security its due attention. Likewise, if a student does not spend

enough time focused on basic programming techniques they still may have underdeveloped

programming skills when they are required to write more complex software.

www.manaraa.com

5

Put another way, does one ask a child who still needs training wheels on their bicycle to pull a

wheelie?

The author proposes letting students complete Computer Science I before they attempt to cover

any significant security content, but immediately after Computer Science I has been completed

the student commences a focused study of security in a course on secure programming. The

author believes that the students need to be able to practice further their Computer Science I level

of programming techniques while learning secure coding techniques that will allow their code to

operate correctly, even when being subjected to malicious influences. Furthermore, Computer

Science I students do not contemplate “the impossible” as much as they should. Contemplating

how to write code that can deal with “the impossible” should become their habit. If students are

going to be able to create secure programs, then Bishop and Frincke assert:

“The final characteristic of robust programming is to assume that impossible

events can occur. Impossible cases are rarely that; most often, they are based on

an expectation that something in a particular environment will be highly unlikely.

Thus, when the environment changes - or a program moves - seemingly

impossible events can occur with regularity. This is a difficult concept to teach,

in that it requires a broad perspective on possible usage scenarios and a

willingness to be penalized, if necessary, to guard against unlikely occurrences.

Student programmers must learn to identify the assumptions they do not

consciously realize they are making - a paradox. Once they’ve identified those

assumptions, they must learn how far they can go in handling the associated

impossibility.” [7]

www.manaraa.com

6

Authors from industry have written books that could be adapted for this sort of code security

course despite being written for an experienced, industrial audience [19, 32, 33, 34, 49].

At least for now, the author is unable to require his own students to take a dedicated security

course. Such a course would be added to an already overloaded curriculum, which clearly would

displace other material if it were to be required. Even if it were to remain a mere elective, it

doubtless would displace other electives within an individual student’s studies. The author

consciously proposes a suboptimal solution to what the author believes to be an intractable

problem.

www.manaraa.com

7

CHAPTER II

REVIEW OF LITERATURE

Section 1: Problem Overview

Computer security problems have existed since the dawn of the digital computer era [39, 57].

Site security - the control over the knowledge of the site and access to the site in which the

computer was located - was the principle concern before computers could be accessed remotely

and have data electronically transferred from computer to computer. Site security remains an

important portion of the overall set of computer security issues but since has been joined by

various other issues. Routine remote access to computers has made unauthorized access much

easier to achieve. Today, it should be taken for granted that any computer that is accessible from

any public network - particularly the Internet - is a likely target for hackers. Routine transfers of

data between computers also have facilitated both unauthorized access and the spread of

malicious software. Even computers that are isolated from networks are vulnerable to infection

by malicious software on portable storage devices. These problems, together with the increasing

dependence on computers during both routine and critical activities, have made it necessary to

focus additional effort toward combating computer security problems.

www.manaraa.com

8

Site security and hardware support for security still are valid and important areas of study. They

generally are beyond the scope of an academic computer science study of computer security,

though. Instead, this study focuses on the computer security problems related to and addressable

by computer software. Whether by errors in design and coding or by user-perceived

shortcomings in features and usability, all non-trivial software is imperfect. Even trivial software,

such as a throwaway developmental prototype program or even a simple “Hello World!”

program, can be considered a potential security problem if it either can grant unauthorized access

or can deny authorized access due to abuse or even just excessive use [49]. Indeed, all non-trivial

computer software is a potential security problem and even some trivial software can be a

potential security problem. While careful, skilled, and extensive testing may find some problems,

testing rarely ever will locate all problems in a real world program [33, 34, 49, 77].

Software development, like so many other fields of business, operates under management-

imposed priorities and constraints. Historically, for many projects, the priorities have been

features and time-to-market [35]. Constraints upon budgets and staffing have limited the work on

the aspects of projects which management considerers to be of lesser priority. Security too

frequently is given such a (lesser) priority. This is because security commonly is analyzed by

management using a Return-On-Investment prioritization system [49]. Significant investments in

security may not seem to yield an obvious return on the investment required to create them unless

someone invests even more time and resources by reviewing log records regularly and reporting

their findings to management. A better model for setting the priority on security might be to

consider security like an insurance policy [49]. Any good business manager knows that a

sufficient level of insurance is a necessity. Attempting to operate a business without sufficient

insurance may be possible for some period of time; however, when a major problem occurs,

insufficient insurance may destroy the company. Likewise, when a major potential computer

www.manaraa.com

9

problem occurs, a sufficient level of security may prevent it from becoming a problem at all

whereas even just a single flaw in any critical component may doom the company. If

management can be taught to think of security from the perspective of insurance, then security is

more likely to get proper attention in the future.

How can management be taught to think of proper security as being like proper insurance? Most

managers are university-educated. In the software development industry, most managers were

either business management majors or computing majors who moved up into management

positions as their careers progressed. One solution would be to reexamine the educational

curricula that future managers are going through and adjust them as needed to give those future

managers a more proper attitude toward computer security.

The developer’s own attitudes frequently both can compound and can explain the problems of

management-imposed constraints. Too many developers simply ignore the potential for security

problems in their projects [23]. They seem to believe, according to West and others, that security

is someone else’s problem [17]:

“[P]eople tend to believe they are less vulnerable to risks than others.” [74]

It might seem like security is best left to the experts: those with majors, minors, concentrations,

and areas of emphasis in computer security, network security, information assurance, digital

forensics, and other similarly specialized areas. Security is not just a problem to be dealt with by

the experts, though; security is everyone’s problem [26]. The fact is that a single security flaw in

a single program can leave not just a single system vulnerable, but potentially open up all other

systems on the same network as well. While a small staff of security experts indeed may be a

www.manaraa.com

10

very good investment for any sizable software development project, all of the individuals

associated with the project need to have a basic competence with security. This includes the

initial architects and designers, the coders, the testers, the deployment experts, and even the

maintenance team.

Perhaps it is because of these priorities, constraints, and attitudes that security has been treated as

an afterthought in industry for so long [37]. Too often it has been something that would be

primarily left to the testers, and even the users, to discover the need for security. Once a security

flaw was reported a sufficient number of times to be considered more than just a mere fluke or an

odd glitch, the maintenance teams quickly would be instructed to jury rig some sort of patch that

would prevent further exploitation of the problem. Unfortunately, all too often the maintenance

teams do not have the glamour to attract the best talent. Even if the maintenance teams do

understand the system that they are maintaining and the nature of the security problem

sufficiently, the problem may not be easy to fix if it actually is due to some of the more

fundamental assumptions in the software’s architecture and design. Many companies are

discovering that it is not as economical to make massive changes late in the project as it is to

design the project better and implement it more carefully from the start. This habit of treating

security as an afterthought is beginning to change, though. Industry has realized that they need to

integrate security throughout their software development processes [53]. However, industry is

not the only place that security has been treated as an afterthought. Academia has done it as well

[69, 70].

Industry has begun to recognize that academia has not been preparing software developers

properly to deal with security issues properly, and industry has begun to take that responsibility

www.manaraa.com

11

partially upon themselves [66]. Fortunately, academia has recognized the problem as well, and

knows that its graduates lack the knowledge of security issues that they need [4, 11, 51, 66, 78].

Unfortunately, knowledge of security issues alone is not enough. Too many students are

graduating without the skills to deal with security problems, even when they are aware of the

problems [78].

Section 2: Historical Academic Approaches to Computer Security

The reason so many students lack a sufficient security knowledge and skill set is due, in part, to

the fact that security coursework is not available in many universities [51]. Several universities

gravely are lacking in any faculty who have a real interest in security, let alone any faculty who

specialize in security [48, 69]. Numerous universities do not have a sufficient number of faculty

members to teach security in addition to the other coursework that currently must be included in

the curriculum. Neither do many universities have their curriculum structured in such a way to

allow their students some time for security coursework to be taken. Universities that do offer

security coursework normally do not offer said coursework until late in the undergraduate

program or even the graduate level [51, 56, 69]. It is impossible to expect most software

developers, many of whom only have an undergraduate degree, to be competent in computer

security if security continues to be something generally left for graduate level studies. If security

is required at some point in the undergraduate program, then some level of competence can be

assumed. Unfortunately, few universities require security coursework at any level.

www.manaraa.com

12

Too many universities that actually offer security coursework merely offer it as elective

coursework and do not require either their undergraduate students or their graduate students to

take any security coursework [26, 44, 50, 51, 54]. While the availability of elective coursework

still may be better than not having the option to take any coursework in security at all, this still

results in significant numbers of undergraduate students, and even graduate students, having

insufficient exposure to security. In many cases, including that of the author, it is possible for

someone to complete computer science degree programs all the way up through - and including -

the doctoral level without taking a single course dedicated to computer security. While it should

be noted the author has made an extensive study of security as a portion of the doctoral research

project and has taught a course on computer security, this does not suggest in any way that the

average undergraduate student or graduate student similarly lacking clear indication of security

coursework from their transcript will have any similar personal studies of security.

There are three primary approaches or subtopics most frequently covered in an academic study of

security: information security, network security, and system security [60]. Sometimes a course

on one of these three will be offered as a focused examination of that subtopic of computer

security. Other times, two or perhaps even all three of these subtopics will be combined into a

single course on security. Occasionally, another approach will be covered during one of these

courses, though, that being a code-oriented approach to security, as it relates to the other security

topics in that course. Lastly, there is without question a certain level of computer security that

can be and is being taught to non-majors [16].

Section 2.1: Information Security

www.manaraa.com

13

Information security is the study of policies, procedures, and technologies that can be employed

to protect the confidentiality [9, 30, 40], availability [40], integrity [9, 30, 40], authenticity [9,

30], and non-repudiation of information [28, 30]. Sometimes known as information assurance

[40], this area of security predates even the earliest parts of the history of computing. Information

security has been and continues to be a focus of incredible importance both inside and outside of

the computer world.

The objective of information confidentiality is to ensure that no one can obtain understandable

information except those duly authorized to do so. This extends to information in non-volatile

storage, information in volatile memory, information in transit between computer systems, and in

some cases even to information in transit inside a single computer. Many techniques have been

developed to protect the confidentiality of information, but none prove more effective than the

prevention of access to the information. If one is not able to access the information remotely,

then other techniques are unnecessary; however, breakdowns in access control policies and

procedures routinely occur, particularly in transit, and it also is quite common to attempt to

conceal the very existence of the information, also known as steganography. The use of

steganography can be traced back at least 2,400 years in the writings of Herodotus [20], yet

information sometimes is discovered despite the best efforts to conceal it; therefore, it also is

quite common to attempt to obfuscate the information as well, also known as cryptography. The

use of cryptography can be traced back at least 2,000 years in the writings about Julius Caesar

[38]. It is quite possible that steganography and cryptography date even further back in history

than believed, and yet - despite their ancient roots - they remain areas of considerable interest and

importance within the computer world.

www.manaraa.com

14

The objective of information availability is to ensure that information can be accessed by all

those duly authorized to do so. One of the earliest known techniques for ensuring information

availability is the engraving of said information into stone displayed in public places.

Unfortunately, this technique is in direct conflict with information confidentiality and so cannot

be used with confidential information unless steganography, cryptography, site security, or a

combination thereof also is employed. A more modern technique is the duplication and

distribution of numerous portable copies of the information. While this duplication and

distribution technique has been proven extremely successful with static information, including

some documents well in excess of 2,000 years old, it clearly and quickly fails as a technique for

the storage of dynamic information. When the information is of a dynamic nature, there must be

a reliable means for determining whether a copy of the information is outdated and updating the

outdated copy. An even better approach is to update preemptively all outdated copies without

delay once they become outdated. Particularly when dealing with dynamic information or even

just copies of static information, there also must be a means to ensure the integrity of the

information, something that remains a topic of study even to this day.

The objective of information integrity is to ensure that information is not changed except by those

duly authorized to do so. One of the earliest known techniques for assuring information integrity

was to store the information on some sort of medium that could be written once, but for which

any attempt to edit the information would be immediately obvious. Engraving the information in

stone or writing the information in permanent (often slightly acidic) inks on papyrus or parchment

were some of the most common ancient techniques to ensure information integrity. The

boundaries of the information were often marked with either borders or fancy greetings and

salutations to prevent any additions from being prepended or appended. Any attempt to alter the

information would be obvious immediately and therefore reveal a lack of integrity. This same

www.manaraa.com

15

technique remains important to this day and frequently is referred to in the computer world as a

WORM (Write Once, Read Many) storage system [19]. While this system works well for static

information, it has difficulties with dynamic information unless it is considered acceptable to

create a new WORM record every time the information changes. Despite this, in today’s

information-oriented world, some places consider WORM records not just acceptable, but

actually prudent or even legally required. In the case of dynamic information that is not stored on

WORM devices, perhaps due to the frequency and volume of changes, more elaborated measures

must be taken to ensure information integrity. In these cases, multiple backups frequently are

used to allow comparison between copies in order to detect any failures in information integrity.

However, all of this assumes that physical storage of the information is being dealt with

exclusively, rather than electronic transmission of that same information. In the comparison of

multiple geographically separated and frequently updated backups, this clearly is not the case.

The issues involved with the assurance of integrity in electronically transmitted information are

substantially different. Error detection codes, error correction codes, and cryptographic systems

are each currently in use for assuring the integrity of electronically transmitted information.

These systems, as well as systems for updating, comparing, and synchronizing geographically

separated backups, all remain modern research topics of significant interest in the computer

world.

The objective of information authenticity is to ensure that information was produced by those

who claim to have produced it. One of the earliest known techniques for assuring information

authenticity was to have a mutually trusted agent deliver it from the producer to the consumer.

This technique remains important to this day both in the computer world and beyond. Within the

computer world, the use of mutually trusted encryption protocols for the protection of

communication sessions is very common to ensure that whatever the consumer received did

www.manaraa.com

16

indeed come from the producer. Nonetheless, middle man attacks continue to occur, even against

communications sessions protected by widely trusted symmetric encryption systems. Another

early technique for assuring information authenticity was the use of a personal mark, personal

signature, or personal seal. The required use of personal signatures to finalize financial

documents, and to make legal papers official, continues to the present day and can be expected to

continue well into the foreseeable future. Likewise, the use of digital signatures has become

common within the computer world to ensure the authenticity of digital information both with

stored information and with transmitted information. These digital signatures are frequently

either an appended duplicate copy of the information or perhaps the only copy of the information

in question, in either case, with the digitally signed portion having been encrypted with an

asymmetric encryption system where the encrypting key is kept private by the producer but the

decrypting key is made public to those who have legitimate need to verify the authenticity of the

information. As the level of protection provided by older encryptions degrades, every stored

copy either must be updated periodically by the information’s producer with stronger, more

modern asymmetric encryptions or the level of assurance for the authenticity of the information

will decrease over time. This further necessitates continued and, likely, even perpetual research

into asymmetric encryption systems.

The objective of information non-repudiation is to ensure that information cannot be disavowed

by those who produced it. One of the earliest known techniques for assuring information non-

repudiation was the use of a receipt. The most common situation for the use of a receipt to ensure

information non-repudiation is almost certainly a sales receipt documenting the list of items sold

and the prices at which they were sold. In the case of an authentic receipt from a finalized sale,

this generally is considered sufficient legal proof of sale and the terms of the sale to prevent the

seller from subsequently disavowing the sale or debating the terms of the sale. Another common

www.manaraa.com

17

use of a receipt is the post office’s proof of delivery receipt. This commonly is used as legal

proof that the post office did indeed deliver the specified packet to the specified recipient and

show when and where the delivery occurred. However, unlike the example of a sales receipt, a

post office receipt does not always make clear the contents of the packet in question. Within the

computer world, log records can provide some assurance of information non-repudiation. If the

authenticity and integrity of transmission logs can be assured, then the non-repudiation of

information transmission may be assured as well, so long as the logs contain sufficient details

about what it was that had been transmitted. Likewise, if the authenticity and integrity of login

and activity logs can be assured, then the non-repudiation of information locally generated may

be assured as well, if the logs contain sufficient details about the activity in question. From

another perspective, though, this area may be considered a special variant of the information

authenticity problem if a digitally signed receipt with sufficient detail about, or preferably a

complete copy of, the information in question is produced. The critical difference being that the

aging of the digital signature would eventually weaken the digital signature’s ability to ensure

non-repudiation, and therefore research into information non-repudiation likely will continue into

the foreseeable future.

Modern academic studies of information security typically include technological topics such as

steganography, symmetric and asymmetric cryptography, data backup systems, WORM systems,

and digital signatures. They also include even more extensive studies of policies and procedures

such as access control, the storage of information in secure geographically disperse locations,

layered defenses [42], business continuity and disaster response, and incident management [9].

Given the incredible amounts of data used and generated daily in modern society, the importance

of information security cannot be overstated; however, a proper study of information security

traditionally requires a database course prerequisite, and perhaps also a file systems course

www.manaraa.com

18

prerequisite, in order to provide the necessary foundation in modern data storage techniques. A

networks course prerequisite also is important for the study of information security related to

information in transit through computer networks in order to provide the necessary foundation in

network hardware technologies and software communications protocols.

Section 2.2: Network Security

Network security is the study of policies, procedures, and technologies that can be employed to

protect computer networks and the connected systems from threats originating within the

network, in addition to those originating outside the network. Network security’s primary

objectives include authentication of users attempting to access the network segments and their

associated systems, exclusion of malicious software and data from the network, and prevention of

snooping or modification of transmissions in the network. Common network security tools

include authentication servers, gateway proxy servers, demilitarized zones, network monitors,

anomaly detection systems, honey pots, firewalls, antivirus software, and antispyware software

[38, 64, 68].

The objective of the authentication of users is very important to insure that only authorized users

can access the network, and even then insure that they can access only those systems and network

segments that they are authorized to access. Some networks allow users who have been able to

log in to a system to access that segment of the network and public resources of the network,

including external access to the Internet, even if they logged in to that system using a guest

account. These networks are basically public access networks, whether by intent or not, and the

www.manaraa.com

19

systems connected to them should be considered to be at high security risk. Other networks will

not allow any users to access the network unless they have been authenticated by a network

authentication server, even if they were able to log in successfully to a system on the network.

Others will go so far as to exclude any system for accessing the network until said system’s MAC

address is added to the authentication server’s list of systems authorized to access the network.

These private networks only are more secure than public networks if the authentication servers

and users’ authentication information can be kept secure. In the case of connection requests

originating from outside of the network, it is not uncommon to require authentication to a proxy

server at the network gateway in order to enter the network and access any systems therein. This

technique also can be used at the boundaries between segments of a network that have

significantly different security levels. It also increasingly is becoming common to set up a

demilitarized zone to contain network resources that need to be exposed to lower security network

segments or to external networks, including the Internet. This demilitarized zone then would

have its access to the more secure internal network segment(s) carefully controlled to prevent

unauthorized access to the more secure network segment(s) [65]. At the access points between

different segments it is very common to have network monitors, sometimes called packed

sniffers, and anomaly detection systems in use to detect policy violations as well as monitor

technical conditions on the network. When policy violations are detected, they sometimes can be

traced back to authorized users attempting to do things which violate network policy settings but

actually may be completely acceptable under organizational policy. For example, the author once

heard an engineer tell of the difficulties she encountered with an access control system while

trying to find technical data on a particular type of “screw” she proposed to use in the machinery

she was designing. The author also has personal experience with web pages discovered through

Internet searches being analyzed and falsely classified as “pornography” and blocked until the

author had a network administrator examine the site, confirm the false positive, and release the

block. However, not all policy violations are innocent. Many policy violations are indeed

www.manaraa.com

20

evidence of unauthorized activity, either by authorized users or by intruders that somehow have

penetrated the network. Some of these intruders utilize stolen credentials and others use forged

credentials but in either case, the ability sometimes to discover them by their policy violations or

other anomalous behavior is growing in popularity.

The objective of excluding of malicious software and data from the network is very important for

maintaining good technical conditions within a network. Even if they fail to cause any additional

harm to the network and its connected systems, viruses, worms, spyware, Trojan Horses, spam,

and many other forms of malicious software and data all consume network bandwidth at the very

least. If the network traffic containing these malicious programs and data can be intercepted and

dropped at either the network’s exterior gateway or the boundaries between its segments, then it

will minimize the amount of wasted bandwidth and the number of systems exposed in case those

systems are vulnerable to that particular threat. Indeed, most systems are vulnerable to denial of

service attacks and even more so to distributed denial of service attacks. These attacks can result

from the delivery of any sort of network traffic - be it a virus, spam, or even seemingly innocent

web page requests in the case of a web server.

The objective of prevention of snooping or modification of transmitted packets is very important

for assuring the confidentiality and integrity of information in transit through the network.

Encryption is one of the most common techniques to ensure the confidentiality of information

against snooping during transit. Symmetric encryption systems using network shared encryption

keys may prevent an outside system that has infiltrated the network from compromising the

confidentiality of information in transit, but they are virtually useless against snooping

perpetrated by a system authorized to share that network encryption key. Private session

www.manaraa.com

21

encryptions are much more secure than shared network encryptions but they presume a private

and secure way to negotiate or even prearrange the session encryption keys. Confining

transmission packets to the minimal number of network segments necessary to transfer the

information from source to destination also is helpful and is one of the primary results of the

replacement of older network hubs with more modern switches and routers. Asymmetric

encryption also is very useful for assuring information confidentiality and is one of the most

common techniques to ensure the integrity of information against modification during transit.

Asymmetric encryption also is highly effective for negotiating private session encryption keys in

a network where snooping otherwise would be a serious concern.

Reliable network security is a necessity for any network that will be connected to the Internet, or

any other public network in any way. A proper study of network security clearly requires a

networks course prerequisite in order to provide the necessary foundation in network hardware

technologies and software communications protocols.

Section 2.3: System Security

System security is the study of how to protect a computer from both human and automated

exploitations. It includes the study of secure operating systems, firewalls, antivirus programs,

antispyware programs, anomaly detection systems, log audits, software updating, and - in many

cases - even hacking tools and malware attack techniques [65].

www.manaraa.com

22

The study of operating systems’ security features and characteristics is a very important part of

system security. Certain operating systems are more secure than others. Some operating systems

are designed with security as an important foundational principle. Most of these operating

systems achieve their greater security due, in part, to careful isolation of users from other users

and processes from other processes. While heavily criticized by some as being very wasteful of

resources, this can be a very effective technique and is gaining popularity, as can be seen in the

growth of virtual machine usage. Some operating systems also can be made considerably more or

less secure, depending on how they are configured. Access permissions in particular have a huge

potential impact upon a system’s security. The permissions set on individual files and folders can

be customized to limit which users and applications may access them; these should be set so that

the smallest number of users and applications are allowed access, while still granting access to all

those who have legitimate need. Types of access also can be customized, so that only those

particular permissions that individuals and applications actually need are granted to them.

Additionally, overall permission of multiple accounts can be categorized into groups and then

customized either to authorize or to limit their activities and their access permissions on a system-

wide basis. Proper use of operating system provided permissions can make significant

improvements in security on a system-wide basis. Conversely, improper use of operating system-

provided permissions can create significant vulnerabilities in security on a system-wide basis.

The security of the operating system is one of the most fundamental issues in overall system

security.

The study of hardware and software firewalls is a very important part of system security.

Firewalls are used for blocking unauthorized transmission into and out of a computer. By

limiting the transmission ports and protocols to a certain authorized list, many potential problems

will be prevented completely before they can ever occur. Also, more modern firewalls can be

www.manaraa.com

23

tied in with antivirus software and antispyware software to scan all incoming packets for

malicious software and all outgoing packets for communications to known botnet and spyware

controllers. Anomaly detection systems also can be configured to scan those packets attempting

to pass though the firewall in either direction for policy violations to provide even greater defense

in depth for the system at the firewall border with the network.

The study of how to audit system logs is a very important part of system security. Frequent

audits of the system logs also can reveal evidence that the system has become a target of interest

to the outside even when it has not yet successfully been penetrated. If usernames for unknown

users begin showing up in the logs, or if unsuccessful login attempts show up and are not

immediately followed by successful logins from those same accounts, even very slow and

sporadic penetration attempts may be uncovered. Furthermore, even successful logins from an

authorized user may reveal unauthorized access, particularly if the logged connection source IP

addresses or times do not conform to established patterns for the user in question.

The study of software update issues is a very important part of system security. Many modern

software systems are capable of automatically updating themselves, some even when they do not

have a user currently logged in. This frequently is accomplished by having the software activate

and connect to an update server every so often to inquire if there are updates available. While

many users may enjoy not having to invoke manually their update routines for their systems,

these automatic update features actually can be both good and bad, depending on how the system

is being used, how the update features are configured, how critical the software is to the system in

question, and how well the updates are tested prior to release. Some users will not remain logged

in to their system when they are not currently using their system. If the automatic update features

www.manaraa.com

24

- and perhaps even the operating system itself - are not configured to allow updates while the user

is not logged in, it is likely that update routines may be triggered upon user login. If the user is

logging in to perform some time-critical work, it may be very inconvenient for any number of

update routines even to begin checking for the need to update let alone actually downloading and

installing updates each time the user logs in. Users that have had too many bad experiences with

such frequently will find ways to disable the automatic update systems, lower the frequency of

checking for updates, or leave themselves logged in to their system while they are not using the

terminal and potentially even while they are away from the terminal. These responses can result

in lower security as updates get delayed and can allow unattended and unlocked terminals to be

accessible to other individuals. For critical software, substantial delays in installing updates

unacceptably may extend windows of opportunity for system exploitation, even after solutions to

the problems are well known and widely available. Unfortunately, not all software updates are as

fully tested as they should be. A recent example of such was when an antivirus manufacturer

released an update which falsely identified and quarantined the critical Windows XP Service

Pack 3 svchost.exe file as malware. This caused all such affected systems to crash as soon as

they were rebooted [46]. Additional reboots would not solve their crash-on-reboot problem.

Computer support technicians were forced to visit and manually restore each affected machine

including at some rather large companies that experienced failure in the majority of their personal

computer systems [47]. This, and other similar problems with software updates from many

different vendors, has led some to question if one should install updates as soon as they are

available or if it might be better to prolong the potential risk of exploitation in order to allow

other earlier adopters to test more fully the updates.

One of the most controversial historical aspects of system security is a movement towards

teaching more students how to hack and how to write malware [18]. It has been pointed out,

www.manaraa.com

25

though, that the best defenses are the ones that are constructed by those who must fully

understand the attack techniques that may be employed against those defenses [6, 44, 49]. While

this historically has been done in some academic settings, it has not yet achieved universal

acceptance in academia and is met with particularly strong resistance in the administration, the

university’s lawyers, and in the information technology support department at many universities

[71].

Without reliable system security, all the best efforts toward attaining information security and

network security are for naught. A proper course in system security requires at least an operating

systems course prerequisite in order to provide the necessary foundation in among other things,

process scheduling, process management, and inter-process communications.

Section 2.4: Code Security

Code security is the study of well-known coding techniques that have significant security

implications. Code security topics often include information leakage, failure to protect data and

code, numeric overflow and underflow, buffer overflow, exception and error handling, race

conditions, environmental assumptions, issues of trust, usability issues, unnecessarily high

execution privilege, command injection, SQL injection, string format attacks, pseudorandom

rather than truly random number generation, and weak cryptography [19, 33, 34]. Some of these

issues are discussed as general design and coding issues in courses such as Computer Science I,

Computer Science II, and Software Engineering. Others are discussed less frequently as generic

www.manaraa.com

26

design and coding issues in any other courses and are therefore sometimes never discussed at

those universities that do not teach code security coursework.

Information leakage historically has provided huge amounts of information to unauthorized

recipients and, in many cases, lead to even more serious problems, both inside and outside of the

computer world. Information leakage can happen any time a program provides a user any

information other than that which is absolutely necessary for the user to accomplish their

authorized work. Information leakage also can occur when those charged with protecting the

information incorrectly have authorized individuals to access information they have no need to

access, but that is more in the domain of information security than that of code security.

Information leakage also can occur when computer storage devices are read by users that should

not have the ability to read them, but that problem is more in the domains of information security

and system security than that of code security. Rather, the information leakage problem within

the domain of code security involves the program being designed and coded to provide

information to the user that it does not need to provide, including such things as displaying

unmasked passwords during login.

At first, the failure to protect data and code may sound as though it was related to information

leakage very closely. Actually, this is not the case. In the realm of code security, protection of

data deals with making data private to pieces of the same program - and to other programs which

share part of the owning program’s memory - that does not need to access that particular piece of

data. Protection of code, in the realm of code security, deals with making the code immutable

during its execution, and potentially making it unreadable to other processes outside of the

operating system and security applications.

www.manaraa.com

27

Numeric overflow and underflow normally are assumed simply not to happen in their programs

by far too many programmers. In many cases the operands in question might be constrained to

prevent overflow or underflow from being possible in some way. However, in other situations,

when the numeric result both will be output immediately to the user and when any overflow or

underflow would be obvious immediately, it might not be necessary to check for overflow or

underflow. If the numeric result either is stored or used in future calculations, then the code

needs to check for overflow and underflow. Fortunately, overflow and underflow are very easy

to detect at the hardware level. Unfortunately, if they are not detected and the erroneous result is

then used in further calculations, it potentially can produce disastrous results in the case of critical

code. Even in less critical code, numeric overflow or underflow can lead to other code failures,

most obviously including buffer overflows, command injection, and SQL injection.

Buffer overflow is a very common problem in languages that do not automatically track the size

of an array and check to make sure accesses to the array are within the bounds of the array. C

language - one of the common languages in use today - along with several derived and otherwise

related languages, is susceptible to buffer overflows. Proponents of these languages rightly will

point out that susceptibility does not guarantee problems and that properly designed and coded

programs in these languages can be completely free of any buffer overflow problems; some will

go so far as to point out that the very lack of bounds checking should be considered advantageous

for the sake of execution speed in that the time for bounds checking will not be wasted in those

situations where the indexes somehow are constrained always to fall within the array’s bounds.

Others will point out that it is a simple process to design and code a compound structure and a set

of routines to operate on it that will perform bounds checking if the overhead for such is

considered acceptable. Furthermore, in the case of inlined and optimized subroutines, the

www.manaraa.com

28

overhead actually may be partially if not completely optimized back out of the resultant code if

the optimizer detects the code to be unnecessary.

Exceptions and errors are sometimes checked for in particular code routines and reported back to

the calling code for that code to deal with appropriately. Unfortunately, particularly when a

different coder is writing the calling code, not all calling code examines the returned value to

determine if an exception or error occurred. In these situations, false assumptions about the

successful completion of the called routine may cause additional exceptions and errors to

propagate further through the code. This potentially can lead to some things as seemingly benign,

for example, as the crash of a particular module of code. However, when this is a critical module,

such as a security subroutine, the results truly can be disastrous. Moreover, exception and error

propagation potentially can lead to the exploitation of any other type of security flaw.

Race conditions are some of the most difficult of all security flaws to detect strictly through

testing. They can be difficult to test deliberately for due to the timing issues involved in getting

the exact interleaving needed to cause the race to produce obviously erroneous results. When

race conditions do occur, the resulting impact can be potentially insignificant, potentially severe,

or even cause human fatalities, as it was in the case of Therac-25 [52]. Potential race situations

should be easy to find by manual inspection of source code when there are a very small number

of different thread types, but as the number of CPU cores and pipelines continue to increase, the

number of threads in modern programs are similarly likely to increase as well. In a program with

a large number of different thread types, detection of some potential race conditions still should

be possible with compiler assistance.

www.manaraa.com

29

Assumptions about the software environment in which a program may operate can be another

difficult potential security flaw to detect strictly through testing. Depending on how paths are

ordered, what the directories in the paths contain, and what is in the current working directory, a

program may work exactly as intended during all testing; however, with slightly different

environmental conditions, the same program may open up a host of potential security flaws.

While most software developers may think of their code as being relatively or even completely

self-contained, any code that must make system calls is not truly self-contained. Any calls to

other pieces of code that are not defined fully and statically within the calling code have the

potential to be exploited, either intentionally or accidentally, if other pieces of code by the same

name become substituted for the code that was intended to be called. Even simple version

changes can produce unexpected results, varying from an incorrect result or runtime crash on the

mild extreme to a full-blown security breach in the worst case.

Even when the software environment is indeed as expected, there still may be issues of trust that

should be considered when interfacing with third-party software. Many large projects teams

license and include some third-party software as a portion of their project in order to reduce costs

and to protect themselves from accusations of intellectual property theft. When such inclusions

are not integrated fully into the resultant project package, but instead deployed in parallel, risks

can be introduced by future updates to the third-party software.

Usability issues range from potentially insignificant to potentially severe. Prospectively the most

serious of the security implications of usability issues are when the difficulty using security

features and settings alienate users and administrators from using the software’s available security

www.manaraa.com

30

to its utmost. Fortunately, usability issues related to security should be detectable during

extended end-user testing by observing the level of security usage by the users during the tests.

Some programs execute with unnecessarily high levels of privilege. While some programs

indeed do need extensive privilege to operate correctly, few require full root / system

administrator privilege. All programs should have their proper execution privilege requirements

determined and documented at design time. This should be re-verified during the testing and

deployment stages of their development, and their install routines should be customized and

documented accordingly. Furthermore, some programs actually can be partitioned into different

modules that require different levels of permissions, allowing each module to have its

permissions set as low as possible, and thereby further reducing their risks. In the ultimate

example of problems that can occur in this area, some users - either knowingly or not - do all of

their work in a root / system administrator privileged account; thereby allowing all of the

programs they execute to inherit their root / system administrator level of privilege, even if the

programs themselves are able to run successfully with lower user privilege levels.

Command injection is one of the most hazardous categories of security flaws, due to its potential

to allow the complete takeover of the compromised system. Buffer overflows are a notorious

mechanism for command injection, but routines for allowing commands to be passed to a shell or

even the operating system itself for execution also are potential causes for command injection.

One of the most subtle mechanisms for command injection is the manipulation of the execution

environment, particularly the current working directory and possibly even the path, in such a way

as to substitute a Trojan Horse for a called external program or library routine. Once a technique

for command injection is detected, a common tactic is then to open an independent terminal

www.manaraa.com

31

window (“xterm &” on most Unix-like systems) or file system window (“explorer” on modern

Windows systems) for the user to inject even more commands to run using the permissions level

of the compromised program. Whatever the cause, command injection can be prevented though

environmental sanitation and input data validation.

SQL injection, a variation on command injection, has been the plague of database systems for

years. Many different database front end systems do not validate their inputs properly before

passing them on into the code that does the actual database accesses. This can compromise both

the confidentiality and the integrity of the information throughout said database.

String format attacks are another variation on command injection. If the code does not validate

variables passed in to control the format of string output operations, malicious format codes can

leak information and at least in FORTRAN, even order the shutdown the entire system.

Fortunately, string format attacks easily are avoidable if the coders are willing to code a more

complex sequence of operations that determines what format is needed and then outputs the string

with the appropriate formatting already hardcoded into the instruction.

Most developers have heard at some point or another that most computer-based random number

generators are actually only pseudorandom. These generators are good enough to fool the casual

human observer into thinking that they are random sequences but can expose the internal state of

their generator if their algorithm is known and if a sufficient number of generated values can be

observed directly, or sometimes even just observed indirectly. While these generators are useful

and sufficient for entertainment and random simulation programs, they can never be depended

www.manaraa.com

32

upon for anything that involves a true need for secrecy. Instead, cryptographically strong random

number generators and true entropy generators should be used when there is a true need for

secrecy - when there is a need to be sure that the next number can never be predicted based on

any prior observations.

Modern cryptography is based heavily in mathematics, and in many cases is dependent on having

access to a random number series of significant length. Cryptographically strong random number

generators and entropy generators are capable of generating these series of numbers, as are other

sources, but modern cryptographic systems are not invulnerable just because they use

cryptographically strong random number generators or entropy generators. Modern brute force

decryption techniques continue to advance in capability, reducing the strength of previously

secure algorithms and key sizes. Algorithms must be re-examined continually to insure their

continued validity in this ever-changing security environment. Furthermore, it is not just the

programs that currently are in use that need to be updated periodically, but also the encryptions of

data in long term storage. For example, it is very realistic to expect that medical records for

individuals born in the present should be kept confidential for more than a century given the state

of modern medicine. Most encryption systems in use today certainly will break down before that

century is over, requiring the records to be either decrypted and re-encrypted with a better system

or super-encrypted with a better system. If the records are super-encrypted, then access times

will suffer for all future read or write operations that will therefore require multiple encrypts or

multiple decrypts. On the other hand, if the records are instead to be decrypted fully and then re-

encrypted fully, then there is the potential for information leakage during that process. While

modern encryption systems definitely can reduce the likelihood of information leakage, except

for those that have been proven immune to even brute force quantum attacks, perhaps it should be

www.manaraa.com

33

assumed that modern encryption systems do not guarantee success but merely attempt to reduce

the likelihood of information leakage.

Various computer security courses have started to include some coverage of code security as a

portion of the course and as it relates to the information security, network security, and / or

system security topics that the course focuses upon. An information security course might

discuss SQL injection attacks. A network security course might discuss which random number

generators are cryptographically strong and which are not. A systems security course might talk

about buffer overflow attacks and command injection attacks. These tend to be very small

portions of those courses, though. They also tend not to be covered till late in those courses after

substantial amounts of time have been devoted to information security, network security, or

system security theory. As a result, the students may tend to focus on the information security,

network security, or system security theory as being the most important security topic in the

course. They may consider code security to be of lesser importance, as it is appears to them as

not being important enough to attain its own course.

To date, the author has not been able to find a single academic course, other than his own course,

dedicated primarily - let alone exclusively - to code security. Industry, on the other hand, seems

to be offering more and more code security continuing education courses for the college

graduates in the industrial workforce.

www.manaraa.com

34

A course on code security is unique among the areas of computer security studied by computer

science majors in that the only prerequisite needed before such a course would be Computer

Science I.

Section 2.5: Computer Security for Non-Majors

Lastly, there is a certain amount of computer security that rightly is being taught to non-majors.

Frankly, there are certain things that any modern computer user needs to know about computer

security. Despite their considerable use of technology prior to college, the typical college

freshman does not know what they need to know about computer security. Some universities

offer computer literacy courses to non-computer science majors which cover these topics, among

others. Some computer science majors will take these computer literacy courses, particularly if

they do not have an extensive prior technological background, but those computer science majors

that do not take a computer literacy course still need to cover the same computer security for non-

majors topics, perhaps even more than the non-majors themselves need to.

Some of the most important concepts that all computer users need to understand deal with the

creation, storage, updating, and reuse of usernames and passwords. Both usernames and

passwords should be created to be as unpredictable as possible if the user has any say in their

creation. The sole exception to this rule is in the predictably of usernames that are publicly

released as a form of contact information, such as email addresses and web homepage addresses.

Despite the need to have usernames and passwords as unpredictable as possible, they still need to

be easy enough to remember that the user does not need to store them elsewhere. Passwords need

www.manaraa.com

35

to be updated frequently enough to limit the window for exploitation in case the password is

compromised but not so frequently as to make them difficult to remember. Unpredictable

usernames never should be reused from account to account and passwords should never be reused

from account to account or from time to time. Likewise, trivial variations upon unpredictable

usernames and passwords from account to account and from time to time never should be

allowed. Usernames and passwords also never should be shared between different individuals.

While these rules will not guarantee that username / password pairs cannot be broken, when

coupled with automatic lockouts after a certain number of failed login attempts, these rules can

reduce the likelihood that username / password pairs will be broken very quickly.

Limited access accounts should be used for most computer work and administrative privileged

accounts should be used only when absolutely necessary. Antivirus software, antispyware

software, and firewalls should be used in order to minimize the risk of exploitation and hard drive

cleanup utilities should be used to minimize the damage that can be caused by successful

exploitation. All confidential information should be kept both encrypted and backed up

elsewhere further to minimize the damage that can be caused by successful exploitation. Publicly

accessible computers also should be rebooted both before and after use to reduce the chance that

Trojan logins might be running before use and that keyloggers might have left information in

memory after use.

File and directory permissions should be set to restrict access as much as possible and shared

folders should be used as little as possible. File sharing programs should be restricted as to the

folders they can share, if file sharing is allowed at all. Users also must understand the legal

www.manaraa.com

36

environments in which they will be operating and that if their legal environments change, that

they need to become aware of their new legal environments.

Individuals also should attempt to limit the personal information they deliberately make available

via social networking sites to reduce the amount of information available for social engineering

attacks. They also should know not to give out any personal information or account information

through communications that they did not initiate personally to avoid phishing via email and

forged websites. In fact, the transmission of any personal information - even to trusted and

verified destinations - should be avoided from publicly accessible computers and over wireless

networks if at all possible to avoid snooping, unless it is through the use of encrypted sessions.

Lastly, even non-majors need to understand the importance of security being designed into

processes from the start. This principle actually goes beyond just the computer world and so is of

benefit to more than just those who work in areas related to the computer industries. Regardless,

some non-majors someday will be called upon to act as subject matter experts for software

development projects, and these non-majors above all must understand that computer security

must be incorporated into the computer software development process and designed into the

software from the very start.

Computer security for non-majors requires Computer Literacy as a prerequisite or corequisite and

frequently is taught as a portion of modern Computer Literacy courses at those universities that

offer such courses.

www.manaraa.com

37

Section 3: Industry’s Buggy Code Theory

Industry is starting to become aware of a single commonality between all software security flaws,

that they are implemented as code. Some authors, including Ranum, are therefore pointing out

that insecure code can be correctly viewed as simply being low quality, buggy code [50, 56, 58].

"[W]hy are we still treating security as a separate problem from code quality?

Insecure code is just buggy code!” [58]

Information security, network security, and system security courses may provide students with

some practice writing code, but as they do not focus on code, are not likely to improve the quality

of their students’ code significantly. Even if graduates are experts at information security theory,

network security theory, and system security theory, they still may replicate well known coding

errors that lead to security flaws if they are never taught what those coding errors happen to be.

Indeed some categories of errors, such as the buffer overflow, have been well understood for

decades yet continue to be replicated in modern software thereby causing more computer security

problems.

While there is some momentum building in academia to view security faults as design failures

and increase the emphasis on robust and secure design processes in software engineering classes,

it is industry that seems to discuss this buggy code theory the most, even if it is also industry’s

attempts to cut corners to reduce costs that helps perpetuate the creation of more bugs. Still, the

point remains that coders should know better. After all, when a designer specifies that an input

should be received for, say a phone number, a date, or a time, why should the designer have to

specify to the coder to make sure the buffer does not overflow and to make sure to validate the

www.manaraa.com

38

received information? The coders should already know to protect against buffer overflows, and

should not have to have that level of detail appended to each and every single input request given

them by the designers! The coders may need to request information from the designers about

what localization rules to follow to validate phone numbers, dates, and times, since those vary

from place to place. Coders should not have to have every input request they receive specify that

the input needs to be validated, though; they should know to do that!

Section 3.1: Security-Aware Compilers to Combat Security Bugs

One idea to help reduce the problem of security bugs is to treat the security problem in the same

way the optimization problem was handled in the past: ignore the coders and turn the problem

over to the computers themselves. This proposed solution would have developers rely on

security-aware compilers and post-processors [58] to fix algorithmic and coding mistakes in

similar ways to how optimizing compilers fix inefficiencies in source code [29, 43, 58]. This is

being considered because computer software is more methodical and more consistent than

humans are. On the other hand, this idea has been criticized as computer software is not perfect

and since compiler warnings are often ignored by developers.

Software is very good at automating monotonous tasks and performing very precise work in an

especially methodical manner. These characteristics make software an appealing choice for

“looking over the shoulder” of coders to make sure that their code is as secure as possible. Where

a coder might remember to put certain checks and safeguards into their code most of the time,

software is quite capable of finding and pointing out the times when they forgot to do so.

www.manaraa.com

39

Software can be far more consistent than humans. If a development team is striving to use the

same standards, then they may produce code that generally is consistent; however, there still will

be variations within what different developers produce. When developers all are using the same

version of the same security-aware compilers and post-processors, the resulting level of security

should be far more consistent than if the security was being handled by humans alone.

Unfortunately, software is not a perfect solution for the security problem. There are some

security problems that software will never be able perfectly to solve by itself [29, 58]. In

particular, input validation will always require a human to specify what the rules should be for

validating the data. Some argue that many of these sorts of problems easily are solved by simply

returning warning messages to the developer at compile time indicating the security problems that

had been detected that could not be handled by the software and therefore required the

developer’s intervention.

Software issued warnings cannot be considered a fully acceptable solution either. There are too

many documented instances where warnings are suppressed by default. If a developer has to do

extra work just to get extra criticism of said work - even simply that of a compiler or post-

processor - then too many developers will not put in the extra work, assuming they even know

how to invoke the issuance of the maximum possible list of warnings. Few developers use well

known tools that have in some cases already existed for decades, such as lint, that originally were

designed as general compilation and post-processing aids, rather than specifically as security

compilation and post-processing aids. Nonetheless, such tools can find errors in code that could

be exploitable security flaws. If developers will not use tools such as lint, why should anyone

assume that those same developers will use security-oriented compilation and post-processing

www.manaraa.com

40

aids? Some developers have even gone so far as deliberately to take action to suppress not just

compile time warnings, but even deliberately suppress runtime warnings about potential security

flaws rather than correct the flaws.

Section 3.2: Better Education to Combat Security Bugs

Better security-aware compilers and post-processors would be very useful even if they were

imperfect, since software developers are imperfect and do make mistakes [37]. These tools

would be useful if more developers actually used them, assuming of course that the developers do

not simply ignore the programs’ warning messages [58]. Indeed, some tools that can reveal

potential security flaws, such as lint for example, have existed for years but are not universally

used [58].

“[A]cademia and industry are going after symptoms, (teaching attack techniques,

security technologies etc) and not after the cause of the symptoms: In-correct

[sic] software.” [56]

While security experts do need to be very knowledgeable of attack techniques, security

technologies, and many other related topics, Pothamsetty suggests that not every developer needs

to know everything related to these topics. Some security technologies, such as security-aware

compilers and post-processors, should be a required part of every undergraduate computer

science curriculum, but of the historical academic computer science approaches to computer

security, the one that best fits with is code security. Even then, it best fits in with a discussion of

compilation and debugging standards in the pursuit of quality code. Indeed, Taylor, et al., assert

www.manaraa.com

41

that computer science students need to understand the importance of code quality in the quest for

code security.

“It is imperative to teach students that safe and reliable programs are inherently

more secure.” [70]

Then, and only then, are they likely to appreciate fully the value of the tools they already have

and make proper use of them. Furthermore, history is full of examples of times when the

extensive use of particular tools led to further and faster innovation in the quality and

effectiveness of those very tools. Therefore, if the computer world is going to rely on security-

aware compilers and post-processors, then it is going to have to educate its workforce to use those

tools that are already available.

Knowing that academia is in no position to fix the educational deficiencies of those already in the

workforce, industry is increasing its own efforts through continuing education courses and

training [35, 66]. While some of these efforts focus on information security, network security,

and system security, many of them also - or even instead - are focusing on code security, as

Ingham points out:

“Industry programmers are often unaware of the importance of design of secure

systems, how attackers exploit programs, and how easy many exploits are. Over

the last few years, the focus in industry has grown to include security; this

change in focus translates into a need for programmers who can design and write

more secure programs. This need results in a demand for continuing education

classes on programming securely.” [35]

www.manaraa.com

42

Security experts in industry also are writing books about code security [19, 32, 33, 34, 49]. These

are not textbooks for academic use, but rather they are books written for experienced industrial

developers [24, 32, 33, 34, 49]. These books have potential to improve the secure coding skills of

those already out in industry, but they are not written at the appropriate level for the traditional

undergraduate computer science major, and therefore are not ideal to address the current

deficiencies in academia as they currently stand. However, these books could be adapted for use

even in the freshman year of a computer science degree program if there were a sufficient number

of universities interested in having textbooks about code security.

Section 4: Current Theories on Security in the Computer Science Curriculum

Given the magnitude of the security problem and given the level of outcry over it in industry, the

consumer base, and even in governmental regulatory organizations, academia is discussing what

can be done to address the problem. Full solutions, while desirable, currently are not seen as

being achievable quickly or perhaps as being achievable ever. Academia therefore is searching

for any partial solutions that may be worth trying and evaluating. Four theories are prominent at

this time. One theory holds that security should be a required portion of the core computer

science curriculum. Another theory is that security studies need to start earlier in the curriculum.

A third and rather radical theory is that security should be integrated into each and every single

course in the computer science curriculum. A fourth theory, perhaps the most controversial of all,

is that ethical means of teaching hacking skills need to be promoted to provide the same types and

the same level of skills to those that defend computers from attack as the attackers themselves

posses.

www.manaraa.com

43

Section 4.1: Security Required in the Core Curriculum

Academia is beginning to realize that security needs to be a required part of the core computer

science curriculum [26, 36, 44, 45, 48, 54, 66, 69, 70, 76, 78, 79]. While most computer science

majors likely will not specialize in security, academia is beginning to accept that all computer

science majors need to have a certain level of security competency. As promising as that might

sound, there still is not a consensus that code security needs to be required, as it ought to be.

After all, it only takes one bug in one line of code in one program potentially to open up not just

one system, but every system on every network that is running that program.

While security, and code security even more so, might sound like unnecessary additions to some

traditionalists, it should be recognized that at earlier points in the history of computer science, the

typical undergraduate study of computer science did not include some topics that are now

required in the typical undergraduate degree. Not just “new” topics like object-oriented

programming have been added to the required curriculum, but there was even a time when topics

such as operating systems and networks were not ever looked at until one reached graduate

studies, yet now they are accepted as part of the core undergraduate computer science curriculum.

The time is overdue for security, and even code security, to be of the required core curriculum as

well. As Bishop and Frinke assert:

“The ability to write secure code should be as fundamental to a university

computer science undergraduate as basic literacy.” [8]

www.manaraa.com

44

So since, as it has been stated, insecure code simply is incorrect or buggy code, does that mean

that academia is graduating incompetent coders? Even if not intentionally, this is exactly what is

happening. The vast majority of the computer science majors graduating today may be minimally

competent coders but are not fully competent coders. This situation cannot be permitted to

continue.

It most likely will be years before most universities require security as a portion of their core

computer science curriculum, let alone code security. Even then, it still will take over a decade to

graduate a significant enough number of these code security trained graduates to make up a

considerable percentage of active industrial coders. Worse yet, even then there still will be

billions of lines of insecure legacy code in use, due to the high cost of rewriting it. Further, some

universities likely will continue not to require any security, and their graduates still will continue

to perpetuate the production of buggy code so long as they code, unless industry corrects the

deficiencies in their education. Why should industry be required to do so, though? Stamat and

Humphries explain this further:

“A growing trend among businesses is to send their inexperienced programmers

to security “boot camps”. These boot camps provide an accelerated instruction

medium for software developers to receive security training and certification.

Although this is a commendable response it only sidesteps the issue. Companies

have lowered their expectations of today’s college graduates and many now

require all new hires to go through this additional training. This training only

delivers a greater financial burden, both for the company and the consumer. If the

development community wants to combat this problem then it’s going to have to

start from the beginning, in colleges and universities.” [66]

www.manaraa.com

45

Who is better at education, industry or an educational institution? Indeed, it is the colleges and

universities that must step up and insure that their graduates are competent to design and code

secure software. That only can be done when academia, as a whole, requires not just security

coursework but specifically code security coursework of all computer science students.

Section 4.2: Security Early in the Curriculum

Academia is beginning to realize that security, particularly code security, must be started earlier

in the curriculum [36, 44, 45, 54, 69]. Students are getting too much practice writing copious

amounts of insecure code before they get to upper level security courses that might talk about

code security. Once they do cover code security, if current curriculum even does, they will have

years of bad coding habits to break and not have as much time left before graduation to break

those habits as they had to make those bad habits. Students would have less time to develop their

bad habits and would have both more time and more academic guidance to help break these bad

habits if code security were covered earlier in the undergraduate computer science curriculum.

Taylor and Azadegan claim an early start is a necessity:

"[E]ducation must infuse secure coding and design principles early" [69]

Unfortunately, the current model for teaching code security - as a portion of information security,

network security, or system security - cannot be moved too much earlier in the curriculum due to

the prerequisites for those other security topics. Perhaps code security needs to be separated from

other security topics that must, due to their prerequisites, remain later in the curriculum. Perhaps

code security needs to be moved into courses earlier in the curriculum or even made a course of

www.manaraa.com

46

its own. The question then becomes how early code security can be offered and how early does it

need to be offered.

“It is the responsibility of universities to teach future computing professionals

secure and robust coding and design principles from the start.” [70]

Taylor and Azadegan suggest that academia need to start teaching code security from the very

first semester that an undergraduate student is taking any computer science coursework. While

certain authors claim to have even integrated some security into Computer Science 0 and

Computer Science I, a true code security course is not likely to be viable until after the

completion of Computer Science I. Further, without a course of its own, code security may not

be understood properly and respected by many students as the topic of importance that it truly is.

“Software security starts when learning the programming language.” [45]

When, though, are students considered by Marks and Stinson to be “learning the programming

language”? The programming skills of students that have yet to complete Computer Science I

may not mature enough for any discussion of security more than computer security for non-

majors. When the students are taking Computer Science II, they are starting to learn about linked

lists, stacks, and queues which is in turn continuing to help them with “learning the programming

language” and the full depths thereof. They have begun to move on from the very basics of how

to program and, though they still are learning more about how to program, they also have begun

to learn about why we program the way we program. They are beginning to learn to seriously

compare and contrast data structures and algorithms and should therefore be ready to learn to

compare and contrast algorithms and code from a security perspective as well. It is during this

stage of their education that a study of code security becomes viable and could begin: after the

completion of Computer Science I.

www.manaraa.com

47

Section 4.3: Security Throughout the Curriculum

Perhaps one of the more radical recent ideas being considered to improve computer security is to

integrate security throughout the entire computer science curriculum [26, 48, 54, 69, 70, 76].

Each and every single course throughout the entire computer science curriculum would

incorporate some aspect of security into the course. Therefore, all together the required and

elective computer science courses would cover all of the security topics that the student needed.

This would eliminate the need to have any introductory level or required courses dedicated to

security; nonetheless, advanced courses that specialize in information security, network security,

or system security likely still would exist at some universities in order to allow some students to

focus on security for their emphasis. It has been further suggested that security should be

integrated throughout each of the individual courses that are focused primarily on other subtopics

of computer science, rather than just inserting a security module into the course the same way a

course might be inserted into a curriculum [36, 45, 69, 75]. Some universities have even

integrated security into Computer Science 0, Computer Science I, and Computer Science II [69,

72]. These integration theories may help significantly to solve the security problem but they

present problems of their own.

Students are more likely to recognize and understand the importance of areas of emphasis within

computer science when those areas have at least one course dedicated to them. ‘If the faculty

does not think this is important enough to deserve a required course, why should I consider this

important?’ might be exactly what some students would think, should academia attempt to teach

security exclusively in an integrated fashion. It also creates potential scenarios for gaps in some

students’ security education in the not uncommon event that some students transfer from one

www.manaraa.com

48

university to another in the middle of their undergraduate programs. Will two universities that

appear to have similar courses required in their computer science undergraduate degree programs

distribute the various security topics the same way throughout their courses? For some topics like

network security, one likely could assume so; however, but for other topics like buffer overflow

and command injection attacks, for example, probably not.

If security is to be integrated into all courses in a computer science curriculum, it logically also

would impose a requirement for some level of security expertise upon all of the faculty as well as

time constraints upon all computer science courses. Not all faculty members are security experts

or are even interested in security [48, 69]. Many faculty members also may argue correctly that

their course does not have time to do justice to its primary topic, let alone to both the primary

topic and a secondary focus upon security [36, 48]. Even if officially directed to include security

within their course, some faculty would even go so far as to claim ‘academic freedom’ and then

teach only a token amount of security to satisfy the directive. In the end, it would be up to the

initiative of the individual faculty member to decide whether or not to give security its due

emphasis. It may be possible to overcome some of these problems by integrating bits of security

into some courses and not into others. Supposing that all of these new problems could be

overcome, though, what then should be done about proposals to integrate programming language

concepts throughout the curriculum [5]? Proposals also have been made to integrate software

testing [1], team projects [61], ethics [63], robocode [10], HyperCard [31], iPhone [25], and many

other topics throughout the computer science curriculum. Curriculum designers will have to

weigh the value of these various special topics that might be suggested for integration into and

throughout the computer science curriculum as they clearly cannot be implemented.

www.manaraa.com

49

Section 4.4: Ethical Hacking Courses

Likely the most controversial idea currently being discussed regarding security education is that

of ethically teaching hacking skills to undergraduate computer science students [18]. While the

ideas of practicing attack and defense strategies have been accepted in military organizations for

thousands of years, those same ideas have not come into open acceptance with regard to civilians

being taught how to attack computers in academic settings, particularly those as young as the

traditional undergraduate student. Indeed, many claim that a large percentage of the lapses in

computer ethics actually are perpetrated by those same students who may now be able to obtain a

state-of-the-art education in hacking techniques by world-class experts in computer security.

Understandably, this idea has many academicians, their administrative superiors, and their

university’s information technology support department more than a bit uncomfortable.

Despite these concerns, such classes have been taught to upper level undergraduate students and

graduate students for over a decade. This type of class frequently is given much more

supervision than the typical computer science courses taught in the same departments. Students

enrolled in this manner of course frequently are required to sign very restrictive code of conduct

agreements before they can participate in the course. This sort of course also normally is forced

to confine its hands-on exercises and experimentation to isolated test environment systems and

networks [12, 27].

One of the few things that appears to be universal in regards to ethical hacking courses is that the

course must cover ethical and legal issues related to hacking [73]. Once an ethical basis has been

www.manaraa.com

50

constructed to justify the teaching of hacking skills, it must be constrained carefully within the

applicable legal boundaries to insure that the course and its students do not stray accidentally

beyond what is permitted into areas that would require the course to be shutdown and possibly

even lead to the prosecution of its participants.

Once the ethical and legal foundation is well established, then the course can move on to simple

observation of the environment in which the students are being allowed to work. Simple

identification of other machines on the same network segment quickly leads to network traffic

snooping, particularly - but not exclusively - of clear text packets. Even encrypted packets can

still provide information about the existence of and associations of machines in addition to the

types of protocols they are using. In some cases, the types of protocols in use may provide

further information about what operating systems and applications are in use on those machines.

Once something is known about what operating systems and applications are available to target, it

is common to begin reviewing the well known list of exploits that historically have existed in

those operating systems and applications. While any good system administrator will keep their

systems updated to avoid patched historical vulnerabilities, it is very unfortunate - but also very

true - that not all systems have good system administrators. Many operating systems and

applications still may be found to use well known default passwords or may be found to have

unsecured mechanisms for resetting the root / administrative passwords.

There are numerous automated attack tools that also can be employed within an ethical hacking

course to aid in the detection of exploitable security flaws actually while reducing the amount of

www.manaraa.com

51

detail that the students need to be taught about how to break into various systems. In the

terminology of the hacking world, this is the difference between a true hacker and mere script

kiddies. While the script kiddies generally are not given the same respect that a true hacker might

be given within that culture, the script kiddies are often just as capable for conducting quality

penetration testing of a system or a piece of software as a true hacker. The increased training of

“script kiddies” within academia would provide an increased population of skilled penetration

testers for industry to test more thoroughly future software products.

Some of the easiest forms of automated attacks simply are repeated login attempts against both

known and guessed usernames. Such attacks frequently start with dictionary attacks against the

password but then may move on to a full rainbow table attack, particularly when done against a

known username of interest. Such attacks easily should be detectable by modern network

DOS/DDOS protection systems due to the extreme repetition of network login requests, and

therefore should not be as effective a form of attack as it is. However, as previously stated, not

all systems have the quality of system administration that they truly need.

For ethical hacking courses that teach their students to be true white-hat hackers rather than just

“script kiddies”, the skills covered typically include more low-level programming, decompilation

and reverse engineering of executable code, analysis of memory and register contents, scripting,

and even the capture of malware to discover and dissect new exploit techniques.

Low-level programming skills are essential for anyone wanting to create customized and

optimized machine executable code to try to inject into a system. It also can be a useful skill for

www.manaraa.com

52

anyone attempting to disassemble device drivers in order to exploit network cards directly rather

than initially attacking the system as a whole. Finally, though difficult and time consuming, low-

level programming skills can allow one even to disassemble key components of closed source /

proprietary operating systems and applications in order to try to find previously unknown, yet

exploitable, security flaws.

Disassembled or even fully decompiled executable programs can provide the hacker with

significant information about the libraries and other external programs being depended upon, in

addition to the security precautions that are being taken with the data these external pieces of

code might be returning. A full reverse engineering of a program’s security can be very time

consuming, but likely will expose security flaws that were not detected by other more simple

means - including extensive penetration testing.

In some cases, though, a full reverse engineering of source code is not required if a hacker can

acquire sufficient data memory and register values from during program execution. These values,

particularly if their changes can be observed, can provide significant clues into how the

program’s security works, even if the code itself cannot be examined for whatever reason.

Sandbox environments can be used to help obtain these memory and register values for analysis.

Further, it might also be presumed that if one is able to observe more than just memory dumps, if

one is able actually to read the memory directly during execution on a physical system rather than

just in a sandbox, that one also will be able to alter that same memory and thereby compromise

that system.

www.manaraa.com

53

Scripting skills are useful also to a hacker in order to allow fast creation of customized automated

attack tools [62]. Indeed, the very source of the term “script kiddies” has its source traced back to

these types of attack scripts, written by skilled hackers and then handed off to those who are able

to use them to find and exploit security flaws, even if they are themselves incapable of writing

such scripts themselves. Scripting skills are useful also for the white-hat hacker to be capable of

directly reading some of the various malicious programs that have been created over the years

using nothing but scripting, including the well known and notorious ILOVEYOU virus [13].

In many cases, a new attack technique also may be observed when a particular piece of malware

is examined that may not have been taught previously in that particular ethical hacking course. It

therefore increasingly is common to teach how to capture examples of malware in order to dissect

them and discover any new exploit techniques that they might be using. Such practices are

paying off, too; the Stuxnet worm that was first captured in July, 2010, is a perfect example, and

is now being thought to be the world’s first nation-state created cyber warfare weapon designed

to penetrate and sabotage a single specific industrial facility [2]. Some ethical hacking courses

may even encourage their students to try to create new attack techniques or even simply

recombine older techniques into more effective attacks. These techniques are then tried out on

the isolated test environment systems and networks being used by the course and their results are

evaluated. Many new and highly effective attack techniques may be developed during such a

process, to the dismay of those who already might be uncomfortable with such a course in the

first place, but these experiments provide an invaluable leg up on finding defenses against such

attacks that likely would be developed someday by true black-hat hackers eventually. The

question of whether students should be similarly allowed to examine, modify, and try to improve

something as advanced and escape-prone as Stuxnet is a topic that will likely merit very careful

consideration.

www.manaraa.com

54

Section 5: Related Educational Theory

Educational psychology and instructional design theory both advocate a “repetition and

feedback” approach to the teaching of critical and complex topics [3, 14, 15]. A student should

be guided to practice these critical and complex topics with suitable observation of their progress

and prompt feedback on both their successes and their failures. In the instances of success, they

should be told they have succeeded at the current level of expectations. After they have suitably

demonstrated mastery of the topic, they should be considered to have completed that portion of

their education and allowed to move on. In those instances where failure is observed, though,

they should be given prompt feedback and further instruction on the topic in question, then again

allowed to continue to practice under observation in pursuit of success and progress towards

eventual mastery of the topic. Many educational psychologists and instructional design theorists

hold that this repetition and feedback cycle, followed until the expected degrees of success are

achieved, eventually will lead to mastery of the topic by those willing and able to follow the

process through to that end. While heavily used in primary education and secondary education,

this theory is just as applicable to a four year undergraduate education.

Educational psychology also holds that if unacceptable performance is allowed to be repeated for

any period of time without appropriate feedback and correction, then the student may come to

believe that level of performance to be fully acceptable. Any attempt to correct the performance

in the future may be met with both confusion and resistance. The confusion likely can be

overcome only through more education, during which the student likely will ask ‘well, why didn’t

you teach me this correctly the first time!?’ The resistance likely will take repetition to

overcome, perhaps even more repetition than it would have taken to teach the acceptable level of

www.manaraa.com

55

performance correctly earlier on. The bad habit of substandard performance will be harder to

break after it has become a practiced bad habit and even harder still to break if it has gone on long

enough to become second nature to the student. If the habit-modifying repetition does not last

long enough to overcome the second nature of the student, then said student most likely will lapse

back into the bad habit in the future after they are no longer closely being observed in that facet

of their performance.

The interaction of these repetition and feedback theories with code security is in the area of the

feedback. If computer science students are allowed repeatedly to construct and submit insecure

programs during the formative first few semesters of their computer science education without

ever being given feedback on the poor security qualities of the programs, then their likelihood of

learning and consistently using more secure coding techniques either then or later is decreased

significantly. If, however, the same students are given prompt and accurate feedback about the

security qualities of their code and corrected, and then given further instruction in the case of any

failures, they are far more likely both to achieve mastery of code security and consistently

produce secure code for industry throughout their whole career.

Secure code is important but secure software designs are just as important. In computer science

education, coding skills normally are used as part of the basis for teaching software design. If

secure coding is taught at the beginning of the computer science education, then subsequent

efforts to teach the student the importance of and techniques for secure software design, most

likely in a Software Engineering course, should be much more successful. This also is another

application of the repetition and feedback theory. The repetition in question is now a more long

term form of repetition, but it still is valid repetition of security theory, even if a slightly different

www.manaraa.com

56

area of study within the overall topic of computer security theory. It also is repetition of the

importance of security and it is at the same time providing a morale-boosting form of feedback

for the student that they successfully have mastered a previous piece of security theory. Even

though secure software design theory will have its own internal repletion and feedback cycles, it

serves as the culminating cycle for the majority of computer science majors that will not

specialize in security, while it serves as a second cycle for those who will go on to advanced

studies in information security, network security, and / or system security - which will, of course,

also of course have their own repetition and feedback cycles.

Either through its emphasis or its de-emphasis, all computer science education has repetition and

feedback regarding computer security. If the next generations of computer science students are to

be any better at producing secure software than their predecessors who currently are producing

buggy, insecure software out in industry, then security must receive more repeated emphasis and

feedback in computer science education.

Further, there are some in the current generation of computer science students that will someday

go on to teach computing to future students; for them to have a better understanding of security

will help perpetuate and improved understanding of security. This in turn means that security

must be required of all computer science students as soon as that is possible.

Section 6: Related Business Theory

www.manaraa.com

57

Total Quality Management theory, from W. Edwards Deming corresponds with the issue of code

quality, as well [41]. Deming theorized that product quality could be increased and errors in

production could be reduced by keeping in conformance to well designed requirements and

through high quality worker training. The Total Quality Management process for improvement

also involves a detailed examination of the entire production system, from start to finish, in order

to locate areas of inefficiency and potential causes for error. Root Cause Analysis, which calls

for the root or most basic cause for a problem to be sought after, is another similar and related

business theory [41].

The application of Total Quality Management theory and Root Cause Analysis theory to the

current state of computer security identifies computer software, at best, as having inconsistencies

in security quality. These quality issues appear as though they are due to errors in design and

coding. Thus it follows that the quality of the training of software developers, the requirements

they are meant to follow, and the conformance with those requirements need to be examined in

order to find the most likely root causes for the quality issues. In this particular situation, though,

the software developers themselves are the ones who generate the detailed requirements they

follow and control how closely they conform to said requirements. Thus it would seem that the

quality issues lay firmly in the training of - and consequently the performance of - the software

developers. Therefore, the logical conclusion is that it is the training of the software developers

which should be improved in order to fix the software security quality issues that industry

currently faces.

If the software developers can be trained better in regards to the importance of security, then said

developers likely are to pay more attention to it in their work. If the software developers can be

www.manaraa.com

58

trained better in regards to the need to design programs so that they are secure from the start -

rather than trying to patch in security later - then they are more likely to do so. If the software

developers can be trained better in regards of which coding constructs to use and not to use, then

they are more likely to write higher quality code. If the software developers can be trained better

in regards to the proper use of tools to aid in the creation of more secure programs, then they are

more likely to use those tools. If the software developers can be trained better in regards to the

need for arguing that “Total Quality Management” demands they “invest the time and resources”

to “insure” the program is secure, then their managers are going to understand they are talking

about sound business principles (TQM, investment, insurance), rather than just spouting

‘technobabble’ to pad their budget.

In the end, it is management that must decide whether computer security problems need to be

solved and - if needed - decide how they need to be solved. If management comes to the

conclusion that the academic preparation of their software developers is the root cause, then those

managers are more likely to try to hire more developers who are highly competent in computer

security, particularly code security, in the their future hires. The universities that are requiring

security, particularly those universities requiring code security, for all of their computer science

undergraduate students naturally will develop a competitive advantage over those universities that

do not require as much security for their computer science undergraduate students. Considering

that some surveys suggest that the supply of domestic students interested in pursuing an

undergraduate computer science major may continue to decline in the near future, any legitimate

competitive advantage that a particular university’s computer science department can develop

over other universities’ computer science departments should be considered desirable.

www.manaraa.com

59

CHAPTER III

METHODOLOGY

The author taught an introductory course in computer security to computer science and computer

information science majors in the Department of Computer and Information Sciences at

Southwest Baptist University in the spring 2010 semester. The course was approved by

Southwest Baptist University to be taught as CIS-2953 (Special Topics: Secure Software). The

course syllabus can be found in Appendix D. There were 23 students enrolled in the course at the

beginning of the semester, 20 of whom successfully completed the course. The purpose of the

course was fivefold.

The first course goal was to expose the students to the importance of security. This was

accomplished by a series of case studies of historical security failures. This goal should be a

portion of any serious introduction to security and is not unique from contemporary computer

science courses in security. Therefore, it was not assessed.

The second course goal was to expose the students to the importance of security as early in their

degree program as possible. This would leave them the maximum possible time remaining in

their undergraduate program to watch for security implications and use their security skills in

www.manaraa.com

60

other courses. The course’s only prerequisite was Computer Science I. This enabled some

freshman level students to take the course. Unfortunately, due to the time constraints the author

was operating under, this second goal was not assessed as a portion of the research project.

The third course goal was to familiarize the students with common categories of security-related

programming flaws. Industry has identified and categorized common security-related

programming flaws into several different groupings. The author drew primarily from [34], and

covered 14 categories that a student coming directly from Computer Science I should be able to

understand. This goal was the primary focus of the assessment.

The fourth course goal was to teach the students how to write secure code. This goal dealt more

with the software development process than the programming flaws of the previous goal. The

author drew primarily from [49]. This goal also has been assessed within this dissertation.

The fifth course goal was to teach the students how to write secure code before they became

accustomed to writing less secure code. Unfortunately, again due to the time constraints the

author was operating under, this goal was not assessed as a portion of this research project.

The course was taught using the Java programming language. Java is not the ideal choice for a

course dealing with security-related programming flaws because of how Java handles memory,

pointers, strings, and exceptions. Either C or C++ would have been a preferred choice of

language, due to the significantly larger number of creative mistakes they allow with memory,

www.manaraa.com

61

pointers, and strings. Despite this, the author was constrained to use Java in this research project

because of the choice only to require the completion of Computer Science I before attempting the

course. (Southwest Baptist University teaches Computer Science I in Java, not unlike Oklahoma

State University.) In the future, the author would like to experiment with teaching a course that

combines an introduction to security with an introduction to C language, but that would have to

be a different project; unfortunately, the teaching of the C language would complicate the

assessment of the course and is beyond the scope of this project.

The course generally ran as the author had expected it to run. There were minor revisions to the

expected course schedule, which can be found in Appendix E. These schedule changes mainly

were due to the inclusion of in-class code reviews of programs submitted by students in the

course. The author removed any personally-identifable information from the submitted programs

prior to the code reviews and allowed students to opt-out of having their code publicly, though

annonomously, reviewed in class without any repercussions. None of the students requested to

opt-out and these in-class code reviews were some of the most active class discussions throughout

the entire semester. The first three programs were written completely by the students. The last

three programs were based on code provided to the students by the author. These pieces of starter

code for programs four though six can be found in Appendix F through H respectively.

Assessment was collected in the form of a pre-test survey and an identical post-test survey given

to both the participating students and control populations not enrolled in the course. The survey

instrument can be found in Appendix C. The data obtained from the analysis of the surveys can

be found in Appendix I. The pre-test was administered the first week of the semester, and the

post-test was administered the last week - prior to finals. Participation in these in-class tests was

www.manaraa.com

62

voluntary for both the students enrolled in the CIS-2953 course and the control populations not

enrolled in the CIS-2953 course. The control populations were CIS-1154 (Computer Science II),

CIS-2213 (Introduction to System Analysis and Design), CIS-3323 (Database Management

Systems Design), and CIS-4443 (Networks). These four courses were selected to serve as control

populations because they contain the vast majority of Southwest Baptist University’s computer

science and computer information science majors and minors; they also were chosen to minimize

the number of impacted courses. There was not a cumulative review in the CIS-2953 course

before the post-test. In addition, the students were not specifically instructed to review certain

topics in preparation for the post-test, as they would have been if it were a test upon which their

grade would be partially dependent.

Each pre-test was assigned a unique six digit pseudo-random number to insure anonymity.

Participants were instructed to record their assigned six digit pseudo-random number in a file

within their personal, private network drive space for reuse during the post-test. The Southwest

Baptist University Information and Technology Services department performed sufficient backup

maintenance of these network drives to insure against loss of the pertinent data between the pre-

test and post-test. This storage was deemed to be more secure than having the students recorded

the numbers in notebooks or textbooks, where the author might accidently see them at some point

during the semester. To further insure anonymity, these numbers do not appear anywhere within

this dissertation.

The pre-tests and post-tests were required to be administered by individuals who were not a

“supervisor, teacher, or employer” in regards to any of the participating students. This excluded

the entire faculty and staff of the author’s department and college, among others. The individuals

www.manaraa.com

63

who were chosen to perform the task of administering the surveys were the Southwest Baptist

University Director of Institutional Effectiveness and the Southwest Baptist University

Assessment Coordinator, two individuals who, alongside other duties, are responsible for

overseeing faculty evaluations. The test answers were then typed by Southwest Baptist

University staff so that the author would not be able to identify participants through recognition

of their handwriting, and the original answer sheets were never shown to the author. The

participants were not asked to sign proof of informed consent in order to insure that the author

would not be able to determine who volunteered to participate and who declined to participate.

An informational script was read to the subjects, prior to the surveys, to inform them of their

rights. This script may be found in Appendix A. An informational handout also was provided for

the subjects to take with them in case they should desire further information about their rights

than was provided in the informational script. This handout may be found in Appendix B. These

elaborate measures were required by and approved by the Southwest Baptist University Research

Review Board and the Oklahoma State University Institutional Review Board.

www.manaraa.com

64

CHAPTER IV

FINDINGS

Section 1: Anticipated Findings

The author expected the project’s primary assessment goal, involving the understanding of

security, to reveal five specific findings. The author expected the project’s secondary assessment

goal, involving coding skills related to security, to reveal five very similar findings to the findings

of the project’s primary assessment goal.

First, the author expected to find no statistically significant differences between the performance

of the enrolled test subjects and the control subjects on the pre-test. Any differences in

performance between these two populations on the pre-test were projected to be due primarily to

the self selection of the two populations, based on their interests in security.

Second, the author expected to find no statistically significant differences between the

performance of the control subjects on the pre-test and the control subjects on the post-test. Any

differences in performance between these two tests were projected primarily to be due to

www.manaraa.com

65

information leakage from the test subjects, based on the relatively tight-knit nature of the

department’s small population, and secondly due to any security topics that might be incidentally

covered in other computer science courses, which the control subjects might be enrolled in during

the time period of the study.

Third, the author expected to find statistically significant differences between the performance of

the test subjects on the pre-test and the test subjects on the post-test. Any differences in

performance between these two tests were projected to be due primarily to the CIS-2953 (Special

Topics: Secure Software) course that the test subjects were enrolled in during the time period of

the study, and secondly due to any security topics that might incidentally be covered in other

computer science courses the test subjects might be enrolled in during the time period of the

study.

Fourth, the author expected to find statistically significant differences between the performance

of the test subjects and the control subjects on the post-test. Any differences in performance

between these two populations on the post-test were projected to be due primarily to the CIS-

2953 (Special Topics: Secure Software) that the test subjects were enrolled in during the time

period of the study and secondly due to the self selection of the two populations based on their

interests in security.

Fifth, the author expected to find statistically significant differences between the improvement of

performance of the test subjects and the control subjects on the post-test compared to the pre-test.

Any differences in improvement of performance between these two populations on the post-test

www.manaraa.com

66

over the pre-test were projected to be due primarily to the CIS-2953 (Special Topics: Secure

Software) the test subjects were enrolled in during the time period of the study and secondly due

to the self selection of the two populations based on their interests in security.

In addition, the author expected to observe differences in the percentage of correct responses to

vary from answer to answer, and believed that analysis of such might provide additional findings.

The author expected that due to low population sizes, the significance of any results might not be

reliable, but was unable to mitigate this potential problem while running the study at the chosen

location.

Section 2: Actual Findings

As shown in figure 4.1, the test subjects performed better than the control subjects on the multiple

choice section of the pre-test measuring the primary assessment goal, involving the understanding

of security, but the difference was not statistically significant. This was in line with the

anticipated finding in this area. This supports the author’s theory that despite the two populations

being self-selected, any differences between them were not statistically significant.

As shown in figure 4.1, the test subjects performed worse than the control subjects on the coding

section of the pre-test which measured the secondary assessment goal, involving coding skills

related to security, but the difference was not statistically significant. This was in line with the

www.manaraa.com

67

anticipated finding in this area. This supports the author’s theory that despite the two populations

being self-selected, that any differences between them were not statistically significant.

Minimum Maximum Average Standard

Score Score Score Deviation

Test Subjects

Multiple Choice Only 7% 47% 28.3% 10.7%

Code Problems Only 0% 33% 12.7% 16.6%

All Problems 6% 39% 25.7% 10.0%

Control Subjects

Multiple Choice Only 13% 40% 24.7% 8.0%

Code Problems Only 0% 33% 19.4% 16.8%

All Problems 11% 39% 23.8% 8.1%

Percent Difference 2 Tailed

Of P-Value

Average Scores

Test Subjects vs Control Subjects

Multiple Choice Only 13% 0.21

Code Problems Only 42% 0.18

All Problems 7% 0.50

Table 4.1: Pre-Test Results (Test Subjects vs Control Subjects) with percent difference as the
absolute value of the difference of the averages over the average of the averages [55]

As shown in figure 4.1, when the overall performance of the test subjects was compared to the

overall performance of the control subjects in regards to all problems within the pre-test, the

percent difference in performance between the two populations was less than it was for both the

multiple choice section and the coding section. In fact, the difference in performance was less

statistically significant than that of either the multiple choice section or the coding section. This

supports the author’s theory that, despite their being self-selected, that any differences between

the two populations were not statistically significant.

www.manaraa.com

68

Minimum Maximum Average Standard

Score Score Score Deviation

Pre-Test

Multiple Choice Only 13% 40% 24.7% 8.0%

Code Problems Only 0% 33% 19.4% 16.8%

All Problems 11% 39% 23.8% 8.1%

Post-Test

Multiple Choice Only 7% 33% 20.3% 7.2%

Code Problems Only 0% 33% 12.5% 16.5%

All Problems 6% 33% 19.0% 7.5%

Percent Difference 2 Tailed

Of P-Value

Average Scores

Post-Test vs Pre-Test

Multiple Choice Only 18% 0.03

Code Problems Only 36% 0.13

All Problems 20% 0.01

Table 4.2: Control Subject Results (Post-Test vs Pre-Test) with percent difference as the absolute
value of the difference of the averages over the pre-test average [55]

As shown in figure 4.2, the control subjects performed worse on the multiple choice section of the

post-test than on the multiple choice section of the pre-test, which measured the primary

assessment goal that involved the understanding of security. This difference in performance was

statistically significant. The author attributes the decline in performance on the post-test

primarily to the times of the semester in which the two tests were administered. The pre-test was

administered during the first week of the semester, which typically is a low stress period for most

students. Conversely, the post-test was administered during the last week before finials, which

typically is an extremely stressful time for most students. The author does not know how this risk

could have been mitigated during the single semester duration of this study; however, were a

multi-semester version of this study to be run, the author believes this risk of error could be

mitigated by administering the surveys at the same time during each of the semesters.

www.manaraa.com

69

As shown in figure 4.2, the control subjects did perform worse on the coding section of the post-

test than on the coding section of the pre-test, which measured the secondary assessment goal,

involving coding skills related to security; despite this, the worse performance was not

statistically significant. The author suspects the decline in performance on the post-test to be due

primarily to the times of the semester in which the two tests were administered but notes it may

be instead simply due to error.

As shown in figure 4.2, when the overall performance of the control subjects on all problems of

the post-test was compared to the overall performance of the control subjects on all problems of

the pre-test, the change in performance was more statistically significant. This suggests the

author’s belief that the performance decline was not due to error, and more realistically due to

either the times of the semester in which the two tests were administered or some other

undetected influence.

As shown in figure 4.3, the test subjects performed better on the multiple choice section of the

post-test than on the multiple choice section of the pre-test, which measured the primary

assessment goal, involving the understanding of security. This measure of performance was

statistically significant. This improvement was in line with the anticipated finding in this area; it

also suggests that this course goal was indeed achieved to some degree, even if the magnitude of

the change was not as large as the author may have hoped.

As shown in figure 4.3, the test subjects performed almost exactly the same on the coding section

of the post-test as on the coding section of the pre-test, which measured the secondary assessment

goal, involving coding skills related to security. This performance was not statistically

www.manaraa.com

70

significant. The author believes that the lack of a statistically significant improvement by the test

subjects clearly indicates this course goal was not achieved.

Minimum Maximum Average Standard

Score Score Score Deviation

Pre-Test

Multiple Choice Only 7% 47% 28.3% 10.7%

Code Problems Only 0% 33% 12.7% 16.6%

All Problems 6% 39% 25.7% 10.0%

Post-Test

Multiple Choice Only 13% 60% 34.0% 13.5%

Code Problems Only 0% 67% 12.7% 19.7%

All Problems 11% 61% 30.4% 13.8%

Percent Difference 2 Tailed

Of P-Value

Average Scores

Post-Test vs Pre-Test

Multiple Choice Only 20% 0.05

Code Problems Only 0% 1.00

All Problems 19% 0.11

Table 4.3: Test Subject Results (Post-Test vs Pre-Test) with percent difference as the absolute
value of the difference of the averages over the pre-test average [55]

As shown in figure 4.3, when the overall performance of the test subjects on all problems of the

post-test was compared to their overall performance on all problems of the pre-test, the results on

the two different parts canceled each other out, producing a difference that was both smaller in

magnitude and not statistically significant. The author suspects this view of the results to be less

important than the two subcomponents that produce it.

www.manaraa.com

71

As shown in figure 4.4, the test subjects performed better than the control subjects on the multiple

choice section of the post-test, which measured the primary assessment goal, involving the

understanding of security. This difference in performance was statistically significant. This was

in line with the anticipated finding in this area. The improvement also suggests that this course

goal, indeed, was achieved.

Minimum Maximum Average Standard

Score Score Score Deviation

Test Subjects

Multiple Choice Only 13% 60% 34.0% 13.5%

Code Problems Only 0% 67% 12.7% 19.7%

All Problems 11% 61% 30.4% 13.8%

Control Subjects

Multiple Choice Only 7% 33% 20.3% 7.2%

Code Problems Only 0% 33% 12.5% 16.5%

All Problems 6% 33% 19.0% 7.5%

Percent Difference 2 Tailed

Of P-Value

Average Scores

Test Subjects vs Control Subjects

Multiple Choice Only 50% 0.00

Code Problems Only 2% 0.97

All Problems 46% 0.00

Table 4.4: Post-Test Results (Test Subjects vs Control Subjects) with percent difference as the
absolute value of the difference of the averages over the average of the averages [55]

As shown in figure 4.4, the test subjects performed better than the control subjects on the coding

section of the post-test, which measured the secondary assessment goal, involving coding skills

related to security; however, the improvement was not statistically significant. The author

www.manaraa.com

72

suspects the lack of a significantly improved performance by the test subjects indicates this

course goal was not achieved.

As shown in figure 4.4, when the overall performance of the test subjects on all problems of the

post-test was compared to the overall performance of the control subjects on all problems of the

post-test, a statistically significant difference still was observed.

Minimum Maximum Average Standard

Score Score Score Deviation

Test Subjects

Multiple Choice Only 7% 13% 5.7% 12.5%

Code Problems Only 0% 33% 0.0% 18.3%

All Problems 6% 22% 4.8% 12.9%

Control Subjects

Multiple Choice Only -7% -7% -4.4% 9.2%

Code Problems Only 0% 0% -6.9% 21.7%

All Problems -6% -6% -4.9% 8.9%

Percent Difference 2 Tailed

Of P-Value

Average Scores

Test Subjects vs Control Subjects

Multiple Choice Only 1600% 0.00

Code Problems Only 200% 0.35

All Problems 19400% 0.01

Table 4.5: Improvement of Results from Pre-Test to Post-Test (Test Subjects vs Control Subjects)
with percent difference as the absolute value of the difference of the averages over the average of
the averages [55]

As shown in figure 4.5, the test subjects performed better on the multiple choice sections of the

post-test versus the pre-test, while the control subjects performed worse. This result was

www.manaraa.com

73

statistically significant. While this first appears to be in line with the anticipated finding in this

area, the author considers this result tainted by the decline in performance of the control subjects,

and believes this finding to be unreliable.

As shown in figure 4.5, the test subjects performed almost exactly the same on the coding

sections of the post-test over the pre-test, while the control subjects performed worse. In

addition, the differences were not statistically significant. The author believes this finding to be

unreliable.

As shown in figure 4.5, when the overall performance improvement of the test subjects on all

problems of the post-test was compared to the overall performance improvement of the control

subjects on all problems of the post-test, a statistically significant difference still was observed.

While this first appears to be in line with the anticipated finding in this area, the author considers

this result tainted by the decline in performance of the control subjects, and believes this finding

to be unreliable.

In addition to verifying the anticipated findings related to the primary and secondary assessment

goals, a detailed analysis of the frequency of correct response to certain individual answers

produced some supplementary, yet notable, findings.

While comparing the results of the pre-test and post test, the largest improvement observed within

the test subjects was on answer 17D where eleven additional students noted the existence of a

www.manaraa.com

74

potential race condition in the sample code. The improvement also suggests that this component

of primary assessment goal was indeed achieved to some degree.

Additionally, there was a noticeable improvement with the test subjects observed between the

pre-test and post-test on question 7, where several additional test subjects noted that code-defect

risk analysis should begin before coding process begins. The improvement also suggests that this

component of primary assessment goal was indeed achieved to some degree.

Finally, there was also a noticeable improvement with the test subjects observed between the pre-

test and post-test on answer 4D, where seven additional students noted that the java.util.Random

class should never be considered cryptographically strong. The improvement also suggests that

this component of primary assessment goal was indeed achieved to some degree.

www.manaraa.com

75

CHAPTER V

FUTURE WORK

Section 1: Future Work in Code Security

As the author prepared to teach this course, certain problems arose; unfortunately, the author

could not address these problems without overly complicating the research. The first issue

involved the programming language with which the course was to be taught. Java hardly is an

ideal language for the course, yet it is the language the author was forced to use based on the

course’s prerequisite. As Dewar and Astrachan put it:

“It’s not impossible to teach the fundamental principles using Java, but it’s a

difficult task. The trouble with Java is twofold. First it hides far too much, and

there is far too much magic. Students using fancy visual integrated development

environments working with Java end up with no idea of the fundamental

structures that underlie what they are doing. Second, the gigantic libraries of Java

are a seductive distraction at this level. You can indeed put together impressive

fun programs just by stringing together library calls, but this is an exercise with

dubious educational value.” [22]

www.manaraa.com

76

C or C++ would be far better choices for teaching security, as Seacord and as Mano, et al., have

noted:

“Although the flexibility and performance of C and C++ aren’t in question,

security has increasingly become an issue.” [59]

 “The buffer overflow problem is easily taught using C/C++, but not so in newer

languages such as Java and C#, which perform bounds checking on inputs. In

fact, these languages are designed to prevent buffer overflow vulnerabilities. This

brings up two questions. Why should we teach the buffer overflow problem if

newer languages are not susceptible? Furthermore, how should we teach it if the

class uses a language such as Java?” [44]

The author always has wanted to introduce Southwest Baptist University students to C and C++

earlier than the point at which it traditionally is taught, their junior year. After all, the author

taught CS-2432 using C to students at Oklahoma State University who had never programmed

before and now Oklahoma State University is teaching CS-2433 in C and C++ to the same level

of students. Why could the author not teach a secure programming course in C and C++ to

students who already knew how to program in Java from Computer Science I?

Lastly, the author believes the best assessment of an elective secure programming course similar

to the one used in this study - even when modified to use C and C++ as noted above - would be

though a department-wide pre-test survey at the beginning of the students’ second semester in the

department, followed up by a post-test survey at the beginning of the students’ last semester in

the department. A more effective mechanism for tracking which students had participated in the

www.manaraa.com

77

course and which students had not would have to be devised to pass the approval of the relevant

human subject research oversight boards; this is due to the fact that multiple students did not

retain their 6 digit pseudo-random number, even just for the duration of just a single semester

class, and therefore had to be excluded from this study.

Section 2: Future Work in Computer Science Curriculum

Many possible solutions for the problem of computer security have been investigated over the

years, and many more are likely to be investigated in the future. The author does not necessarily

propose any truly new curriculum ideas, but rather a hybrid of some elements contrived from

current curriculum theories and a code security course inspired by industry’s buggy code theory.

At the same time, the author clearly rejects certain other elements of and generally ignores other

elements of current curriculum theories as they are irrelevant to the author’s curriculum

proposals.

The author believes that elective information security, network security, and system security

(including ethical hacking material) coursework really should be available at those universities

which offer graduate degrees in computer science. The author also believes that all master’s

degree students should be strongly encouraged, if not outright required, to take a graduate level

security course that includes elements of information security, network security, system security,

ethics, and the law. The author believes that all doctoral students should be required to take such

a graduate level security course as well. The author also believes, however, that these graduate

www.manaraa.com

78

level computer science curriculum issues are generally ignorable in the context of the author’s

real curriculum proposals which focus on the undergraduate computer science curriculum.

Security must become a required part of the computer science undergraduate curriculum. It is

true that some elements of security should be integrated throughout the curriculum, but only as

they naturally fit. Security should not be forced into other courses simply to eliminate the need

for removing any courses from the required curriculum in order to make room for a required

security course. Some courses, perhaps such as numerical analysis, may not have any natural

security tie-ins and consequently may never introduce any security. On the other hand, software

engineering, operating systems, file systems, networks, and database courses - among others -

have natural tie-ins and therefore should have some related security integrated into their content.

Many textbooks can be found that already explicitly provide for such integration.

Security should be introduced as early in the curriculum as possible. Security for non-majors

should be integrated into whatever course functions as each university’s Introduction to Computer

Science course, be that a Computer Science 0 overview course or be that a more traditional

Computer Science I course. Computer Science I should provide a solid foundation in design and

coding for future coursework in secure programming, but should not overtly stress a security

focus for its design and coding topics. Rather, Computer Science I should approach design and

coding from the perspectives of what is achievable in theory, what is functional in practice, and

what is robust under general adverse conditions - rather than under attack conditions. Computer

Science I should be taught from the perspective of promoting robust code. Later security courses

can point out that more robust code equals more secure code and that less robust code equals less

secure code. After Computer Science I the student, in the continuation of a previous analogy,

www.manaraa.com

79

should be ready to have their training wheels taken off of their programming skills bicycle and

start moving on to learning how to do more advanced things such as pull a wheelie … or learn

how to write a priority queue in Computer Science II and learn about secure programming in a

code security course.

An introduction to secure software development should be taught directly following the student’s

completion of Computer Science I. To do so immediately after Computer Science I will

minimize the time they have to develop and practice bad habits. The secure programming course

should include more advanced general computer security theory than their previous computer

security course for non-majors covered. It also would discuss secure design and coding but

would stress the coding more than the design, under the assumption that secure design should be

further reinforced in the student’s future software engineering coursework. The study of secure

coding should begin in the language the student used in Computer Science I and then move on to

include other similar languages as well. Specifically, the student needs to be taught what

common pitfalls exist in very simplistic and fundamental languages such as C language, due to

the creative problems that comparable languages allow that other, more modern languages such

as Java do not allow. The student should be given sufficient programming assignments to

provide educationally sound repetition and feedback on their secure programming skills.

A student should be taught the importance of security. Marks and Stinson suggest that security

may be one of the most important aspects of computer science:

“In today’s development environment, security is more important than execution

speed, user interface, or even time needed to write the code.” [45]

www.manaraa.com

80

As long as academia continues to graduate students that have not been taught the importance of

security, then security problems will continue to arise in an unnecessarily high rate in industry.

While security problems will likely never be completely eliminated, their frequency and the

magnitude of their impact can be reduced. The impact of increased security upon execution

speed can largely be mitigated by the rapid expansion of the number of CPU cores and pipelines

available to the standard personal computer. The demands of improved security upon user

interfaces may require more careful limits on what can be displayed based upon a user’s

permissions, but the techniques necessary to enforce such limitations through code are well

known and easily implementable if enough time and careful attention are taken in a program’s

design and coding stages. Additionally, students need to understand that real programs cannot be

designed and written “overnight” (either literally or figuratively). Security must receive its just

due, even if that means convincing management to push back the release date from what had been

previously advertised. After all, it is far better to inform the public that the company took extra

time to make sure that the program’s security was done right, rather than to release buggy code

that causes the company’s customers major problems in the future.

The student should be taught how to use available tools that can help produce more secure code,

whether these tools were designed to be security related tools or not. The allegedly neigh-

impossible needs to be differentiated from the code-enforced truly impossible and the neigh-

impossible should actually be taught to be routinely expected given sufficient real world usage.

Lastly, Bishop and Frinke suggest the student needs to learn not to trust blindly, but rather to

assume that every user and every program is out to exploit their code.

“It has been said that in computer security, paranoia is not enough, but it is a

good place to start.” [7]

www.manaraa.com

81

CHAPTER VI

CONCLUSION

At present, computer security problems are out of control. Something must be done to reduce the

frequency and magnitude of the security problems that the world is experiencing. While a

complete and permanent solution is desirable, the problems are severe enough to make even

partial and temporary solutions worth trying.

Security-aware compilers and post-processors can help, but only if developers will use them

properly. Unfortunately, developers have spotty track records for using lint and other similar

general purpose compilation aids. This leads to doubt about the probable usage rates of security-

aware compilers and post-processors; which in turn leads to doubt in their potential effectiveness

as a complete solution to the security problem. Despite this, it is a valid partial solution, and

therefore definitely worth pursuing.

Education is another area in which significant potential for improvement may be found. Industry

is pursuing considerable continuing education efforts to correct deficiencies in their developers’

academic preparations. While these educational initiatives in industry are clearly valid partial

solutions, they would have never been so necessary if the developers had received the proper

www.manaraa.com

82

education in computer security from academia.

Computer security, particularly code security, should be required as early as possible, preferably

during the first year of the undergraduate computer science curriculum. All computer science

majors must be competent coders, capable of and well practiced in writing secure code, before

they graduate. In addition, all computer science majors must be aware of computer security’s

importance, particularly that of code security.

Security can be, and should be, integrated into certain other computer science courses, but only as

it naturally relates to the primary focus of said courses. Also, security should have its own

courses that would reinforce the importance of security as an area within computer science; this

also would allow students at universities that have multiple security courses to select security as

their area of emphasis. At the very least, every computer science curriculum should have and

require a code security course. Additionally, those universities that allow a student to focus on

security also should have elective information security, network security, system security courses,

or a combination thereof.

The author has taught an introductory security course with emphasis in code security over the

course of one semester. The students in the course ranged from second semester freshman,

straight out of Computer Science I, to seniors graduating at the end of that semester. While

results from the pre-test and post-test surveys completed by course subjects were mixed, they

suggested that the course was at least partially successful. The students did seem to have a better

understanding of computer security but seem to have not improved as much within the area of

www.manaraa.com

83

secure coding as the author had anticipated. The author feels that more repetition and feedback

on the writing of secure code will improve the course the next time it is offered.

The author also believes that a pre-test survey of a larger population of second semester

freshman, straight out of Computer Science I, and a post-test of those same students immediately

prior to graduation would show a more accurate assessment of the impact of either taking such a

course or not taking such a course. To make such an assessment, though, would require a larger

student population than the author has close access to. It also would involve approximately half

of the subjects not taking such a course, in order that they may act as a valid control group, and

the author would not think it best for any computer science student to skip taking such a course,

particularly just for the sake of researching the course’s impact. The author considers the

computer security problem as better addressed with an imperfect solution applied to more

students than a better solution applied to fewer students, even if it only is for a few years of

research.

The author believes these proposals are not a perfect solution for the present computer security

problem. However, the author does believe that these proposals are a valid partial solution.

While the author believes these proposals should be immediately and universally implemented,

the author recognizes the fact that this schedule is not a realistic possibility, and expects that

additional research project implementations of these proposals will create opportunities for their

further refinement.

www.manaraa.com

84

REFERENCES

[1] Adams, E., Barr, V., Fendrich, J., Leska, C., Thomas, B., Towhidnejad, M., Teaching
software testing throughout the curriculum, Proceedings of the 5th annual CCSC Northeastern
Conference, 178-180, 2000.

[2] Adhikari, R., Technology news: suspicions rise: has a cyberwar started?, 2010,
www.technewsworld.com/story/Stuxnet-Suspicions-Rise-Has-a-Cyberwar-Started-
70892.html?wlc=1285453582, retrieved September 24, 2010.

[3] Astin, A., Student involvement a developmental theory for higher education, 1984,
www.middlesex.mass.edu/TutoringServices/AstinInvolvement.pdf, retrieved July 5, 2010.

[4] Ayoub, R., Chin, A., Parberry, I., A new model for a student cyber security organization,
Proceeding of the 2nd annual conference on information security curriculum development, 12-15,
2005.

[5] Bailey, M., Injecting programming language concepts throughout the curriculum, ACM
SIGPLAN Notices, 45, (11), 36-38, 2008.

[6] Bailey, M., Coleman, C., Davidson, J., Defense against the dark arts, Proceedings of the 39th
SIGCSE technical symposium on Computer science education, 315-319, 2008.

[7] Bishop, M., Frincke, D., Teaching robust programming, IEEE Security & Privacy, 3, (2), 54-
57, 2004.

www.manaraa.com

85

[8] Bishop, M., Frincke, D., Teaching secure programming, IEEE Security & Privacy, 54-56,
2005.

[9] Bogolea, B., Wijekumar, K., Information security curriculum creation: a case study,
Proceedings of the 1st annual conference on Information security curriculum development, 59-65,
2004.

[10] Bonakdarian, E., White, L., Robocode throughout the curriculum, Journal of Computing
Sciences in Colleges, 21, (3), 311-313, 2004.

[11] Brechner, E., Things they would not teach me of in college: what Microsoft developers lean
later, Companion of the 18th annual ACM SIGPLAN conference on object-oriented
programming, systems, languages, and applications, 134-136, 2003.

[12] Carlson, D., Teaching computer security, ACM SIGCSE Bulletin, 38, (2), 64-67, 2004.

[13] CERT, CERT advisory CA-2000-04 love letter worm, 2000, www.cert.org/advisories/CA-
2000-04.html, retrieved September 24, 2010.

[14] Chickering, A., Ehrmann, S., Implementing the seven principles: technology as lever, 2004,
www.fmtsystems.com/04-news/Impl-7-prin.pdf, retrieved July 5, 2010.

[15] Chickering, A., Gamson, Z., Seven principles for good practice in undergraduate education,
1987, crunchie.tedi.uq.edu.au/blendedlearning/pdfs/fall1987.pdf, retrieved July 5, 2010.

[16] CIS 1103 - Intro to Computing: Southwest Baptist University 2009 - 2010, New York: NY:
Pearson Custom Printing, 2009.

[17] Cook, J., What C.S. graduates don't learn about security concepts and ethical standards or -
"Every company has its share of damn fools. Now every damn fool has access to a computer",
Proceedings of the 17th SIGCSE technical symposium on Computer science education, 89-96,
1986.

www.manaraa.com

86

[18] Cross, T., Academic freedom and the hacker ethic, Communications of the ACM, 51, (6),
37-40, 2006.

[19] Daswani, N., Kern, C., Kesavan, A., Foundations of Security: What Every Programmer
Needs to Know, Berkeley, CA: Apress, 2007.

[20] Davern, P., Scott, M., Steganography: its history and its application to computer based data
files, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.8482&rep=rep1&type=pdf,
retrieved July 9, 2010.

[21] DeClue, T., Computer science 1 - is this your father’s Oldsmobile?, The Journal of
Computing in Small Colleges, 17, (4), 12-17, 2000.

[22] Dewar, R., Astrachan, O., CS education in the U.S.: heading in the wrong direction?,
Communications of the ACM, 54, (7), 41-45, 2009.

[23] Futcher, L., von Solms, R., Guidelines for secure software development, ACM International
Conference Proceedings Series, 338, 56-65, 2008.

[24] Gallagher, T., Jeffries, B., Langauer, L., Hunting Security Bugs, Redmond, WA: Microsoft
Press, 2006.

[25] Grissom, S., iPhone application development across the curriculum, Journal of Computing
Sciences in Colleges, 26, (1), 40-46, 2008.

[26] Harrison, W., Hanebutte, N., Alves-Foss, J., Programming education in the era of the
Internet: a paradigm shift, Proceedings of the 39th Hawaii International Conference on System
Sciences, 219b-219b, 2006.

[27] Herath, A., Herath, S., Goonatilake, R., Herath, S., Herath, J., Designing computer forensics
courses using case studies to enhance computer security curricula, Journal of Computing Sciences
in Colleges, 25, (1), 2007.

www.manaraa.com

87

[28] Hjelmås, E., Wolthusen, S., Full-spectrum information security education: integrating B.Sc.,
M.Sc., and Ph.D. programs, Proceedings of the 3rd annual conference on Information security
curriculum development, 5-12, 2006.

[29] Hoglund, G., Security band-aids: more cost-effective than “secure” coding, IEEE Software,
21, (6), 56 & 58, 2002.

[30] Holliday, M., Kreahling, Information security and computer systems: an integrated approach,
Proceedings of the 3rd annual conference on Information security curriculum development, 58-
63, 2006.

[31] Horton, D., HyperCard throughout the curriculum, Journal of Computing Sciences in
Colleges, 7, (5), 49, 1991.

[32] Howard, M., LeBlanc, D., Writing Secure Code 2nd Ed., Redmond, WA: Microsoft Press,
2003.

[33] Howard, M., LeBlanc, D., Viega, J., 19 Deadly Sins of Software Security, New York, NY:
McGraw-Hill/Osborne, 2005.

[34] Howard, M., LeBlanc, D., Viega, J., 24 Deadly Sins of Software Security, New York, NY:
McGraw-Hill, 2010.

[35] Ingham, K., Implementing a successful secure coding continuing education curriculum for
industry: challenges and successful strategies, Proceedings of the 19th Conference on Software
Engineering Education and Training Workshops, 25-25, 2006.

[36] Karam, O., Peltsverger, S., Teaching with security in mind, Proceedings of the 47th Annual
Southeast Regional Conference, Article No. 68, 2009.

[37] Kumar, R., Pandey, S., Ahson, S., Security in coding phase of SDLC, 3rd International
Conference on Wireless Communication and Sensor Networks, 118-120, 2007.

www.manaraa.com

88

[38] Kurose, J., Ross, K., Computer Networking: A Top-Down Approach 5th Ed., New York, NY:
Addison-Wesley, 2008.

[39] Lester, C., Jamerson, F., Incorporating software security into an undergraduate software
engineering course, Proceedings of the 2009 Third International Conference on Emerging
Security Information, Systems and Technologies, 161-166, 2009.

[40] Lester, C., Narang, H., Chen, C., Infusing information assurance into an undergraduate CS
curriculum, Proceedings of the 2008 Second International Conference on Emerging Security
Information, Systems and Technologies, 300-305, 2008.

[41] Levis, M., Helfert, M., Brady, M., Information quality management: review of an evolving
research area, 2010, mitiq.mit.edu/ICIQ/PDF/INFORMATION%20QUALITY%20
MANAGEMENT%20--%20REVIEW%20OF%20AN%20EVOLVING%20RESEARCH%20
AREA.pdf, retrieved July 8, 2010.

[42] Mader, A., Srinivasan, S., Curriculum development related to information security policies
and procedures, Proceedings of the 2nd annual conference on Information security curriculum
development, 49-53, 2005.

[43] Mancoridis, S., Software analysis for security, Frontiers of Software Maintenance, Sept. 28
2008-Oct. 4 2008, 109-118, 2008.

[44] Mano, C., DuHadway, L., Striegel, A., A case for instilling security as a core programming
skill, 36th ASEE/IEEE Frontiers in Education Conference, 13-18, 2006.

[45] Marks, D., Stinson, M., Security trumps efficiency: putting it into the curriculum, Journal of
Computing Sciences in Colleges, 24, (4), 162-169, 2007.

[46] McAfee KnowledgeBase, McAfee DAT 5958 False Positive Error,
kc.mcafee.com/corporate/index?page=content&id=KB68787, retrieved July 9, 2010.

www.manaraa.com

89

[47] McCullagh, D., Buggy McAfee update whacks Windows XP PCs, news.cnet.com/8301-
1009_3-20003074-83.html, retrieved July 9, 2010.

[48] McGraw, G., Silver bullet talks with Matt Bishop, IEEE Security & Privacy, 7, (6), 6-10,
2008.

[49] McGraw, G., Software Security: Building Security In, Upper Saddle River, NJ: Addison-
Wesley, 2006.

[50] Mead, N., Hough, E., Security requirements engineering for software systems: case studies
in support of software engineering education, Proceedings of the 19th Conference on Software
Engineering Education & Training, 149-158, 2006.

[51] Narasimhan, V., Das, M., Data and information security (DIS) for BS and MS programs: a
proposal, ACM SIGCSE Bulletin, 42, (4), 95-99, 2008.

[52] Neumann, P., Risks to the public, ACM SIGSOFT software engineering notes, 25-37, 2006.

[53] North, M., North, M., North, S., Security from the bottom-up: compliance regulations and
the trend toward design-oriented web applications, Journal of Computer Sciences in Colleges, 26,
(4), 54-60, 2009.

[54] Null, L., Integrating security across the computer science curriculum, Journal of Computing
Sciences in Colleges, 21, (5), 170-178, 2004.

[55] Pierce, R., Percentage difference vs percentage error, www.mathsisfun.com/data/percentage-
difference-vs-error.html, retrieved September 25, 2010.

[56] Pothamsetty, V., Where security education is lacking, Proceedings of the 2nd annual
conference on information security curriculum development, 54-58, 2005.

www.manaraa.com

90

[57] Randall, R., The COLOSSUS, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.5075
&rep=rep1&type=pdf, retrieved July 9, 2010.

[58] Ranum, M., Security: the root of the problem, Queue, 3, (4), 44-49, 2004.

[59] Seacord , R., Secure coding in C and C++ of strings and integers, IEEE Security & Privacy,
5, (1), 74-76, 2006.

[60] Sexton, J., Establishing and undergraduate information assurance (information security)
program at a small liberal arts college, Journal of Computing Sciences in Colleges, 26, (2), 234-
240, 2008.

[61] Smarkusky, D., Smith, H., Team projects throughout the curriculum, Journal of Computing
Sciences in Colleges, 21, (5), 119-129, 2004.

[62] Snyder, R., Ethical hacking and password cracking: a pattern for individualized security
exercises, Proceedings of the 3rd annual conference on Information security curriculum
development, 13-18, 2006.

[63] Sorkin, S., Tupper, D., Beiderman, A., Harmeyer, K., Mento, B., Creating an internet and
multimedia technology program in a computer science department, Journal of Computing
Sciences in Colleges, 20, (3), 32-44, 2003.

[64] Stallings, W., Data and Computer Communications 8th Ed., Upper Saddle River, NJ:
Prentice Hall, 2007.

[65] Stallings, W., Brown, L., Computer Security: Principles and Practice, Upper Saddle River,
NJ: Prentice Hall, 2008.

[66] Stamat, M., Humphries, J., Training ≠ education: putting secure software engineering back
in the classroom, Proceedings of the 14th Western Canadian Conference on Computing
Education, 116-123, 2009.

www.manaraa.com

91

[67] Stroustrup, B., Programming in an undergraduate CS curriculum, Proceedings of the 14th
Western Canadian Conference on Computing Education, 82-89, 2009.

[68] Tanenbaum, A., Computer Networks 3rd Ed., Upper Saddle River, NJ: Prentice Hall, 1996.

[69] Taylor, B., Azadegan, S., Moving beyond security tracks: integrating security in cs0 and cs1,
Proceedings of the 39th SIGCSE technical symposium on computer science education, 320-324,
2008.

[70] Taylor, B., Azadegan, S., Threading secure coding principles and risk analysis into the
undergraduate computer science and information systems curriculum, Proceedings of the 3rd
annual conference on information security curriculum development, 24-29, 2006.

[71] Vaughn, R., Dampier, D., Warkentin, M., Building an information security education
program, Proceedings of the 1st annual conference on information security curriculum
development, 41-45, 2004.

[72] Weiss, R., Adding information assurance to the curriculum, Journal of Computing Sciences
in Colleges, 24, (2), 46-48, 2006.

[73] Werner, L., Teaching principled and practical information security, Journal of Computing
Sciences in Colleges, 22, (1), 81-89, 2004.

[74] West, R., The psychology of security, Communications of the ACM, 53, (4), 34-40, 2008.

[75] Whitman, M., Mattord, H., Designing and teaching information security curriculum,
Proceedings of the 1st annual conference on information security curriculum development, 1-7,
2004.

[76] Wilson, B., Aman, J., Bourget, J., Wanted: trained security specialists, Journal of Computer
Sciences in Colleges, 26, (2), 50-55, 2008.

www.manaraa.com

92

[77] Wysopal, C., Nelson, L., Zovi, D., Dustin, E., The Art of Software Security Testing, Upper
Saddle River, NJ: Symantec Press, 2007.

[78] Yang, A., Computer security and impact on computer science education, Journal of
Computing in Small Colleges, 18, (4), 233-246, 2001.

[79] Yasinsac, A., McDonald, J., Foundations for security aware software development
education, Proceedings of the 39th Hawaii International Conference on System Sciences, 219c-
219c, 2006.

www.manaraa.com

93

APPPENDICES

Appendix A: Informational Script on Human Subject Research

Informational Script on Human Subject Research

(to be read to the students prior to testing)

Professor Cain is conducting a research project towards his doctorate entitled Computer Science
Education: Secure Software. The purpose of this research is to determine the effect of his Special
Topics: Secure Software course on your knowledge of security.

Class time will be used to administer in-class pre-tests and post-tests respectively at the beginning
and ending of the Spring 2010 semester. No personally identifiable information will be collected
during this study. Your handwritten answers will be typed by SBU staff, at which point your
original answer sheets will be shredded. Anonymous data will be computerized and encrypted
for storage. Statistical results derived from the data will also be anonymous but may be published
in the future by Professor Cain.

The records of this study will be kept private. Any written results will discuss group findings and
will not include information that will identify you. Research records will be stored securely and
only Professor Cain and individuals responsible for research oversight will have access to the
records. It is possible that the consent process and data collection will be observed by research
oversight staff responsible for safeguarding the rights and wellbeing of people who participate in
research.

There are no known risks associated with this project which are greater than those ordinarily
encountered in daily life.

www.manaraa.com

94

Your participation in this is voluntary. You may withdraw from participation in the pre-test
and/or the post-test at any time prior to turning in the test in question without any penalty or fear
of reprisal. If you wish to withdraw, please tell me.

Do NOT put your name anywhere on the test. You will have until the end of this class to
complete the test. When you complete the test, turn in the test to me, then go across the hall to
the computer lab. Create a file on your personal, private F drive. Save the 6 digit pseudo-random
number you find on the top of the first page of your pre-test information sheet in that file for use
during the post-test.

Any questions?

Please tear off and read the first two pages of the packet you have been given at this time. They
contain information about this study. You may retain these two pages. After you have read the
first two pages, write the 6 digit pseudo-random number found on the top of the first page of your
pre-test information sheet onto the top of your test, and begin the test.

www.manaraa.com

95

Appendix B: Informational Handout on Human Subject Research

Information on Human Subject Research

Project Title: Computer Science Education: Secure Software

Investigators:

James Cain, Principal Investigator, Bachelor of Science in Electrical
Engineering, Master of Science in Computer Science, Assistant Professor of
Computer and Information Sciences at Southwest Baptist University, Ph.D.
student in computer science at Oklahoma State University.

Purpose:

The purpose of this research is to determine the effect of his Special Topics:
Secure Software course on your knowledge of security.

Procedures:

Class time will be used to administer in-class pre-tests and post-tests respectively
at the beginning and ending of the Spring 2010 semester. You will be allowed 50
minutes to complete the pre-test and 50 minutes to complete the post-test.

Risks of Participation:

There are no known risks associated with this project which are greater than
those ordinarily encountered in daily life.

Benefits:

You will be exposed to questions about computer security. These questions may
instill curiosity to further your study of computer security.

www.manaraa.com

96

Confidentiality:

No personally identifiable information will be collected during this study.
Handwritten answers will be typed by SBU staff, at which point the original
answer sheets will be shredded. Anonymous data will be computerized and
encrypted for storage. Your pre-test results will be matched with your post-test
results via the pseudo-random number written on the top of each test. Statistical
results derived from the data will also be anonymous but may be published in the
future by the principle investigator.

The records of this study will be kept private. Any written results will discuss
group findings and will not include information that will identify you. Research
records will be stored securely and only researchers and individuals responsible
for research oversight will have access to the records. It is possible that the
consent process and data collection will be observed by research oversight staff
responsible for safeguarding the rights and wellbeing of people who participate
in research.

Compensation:

Participation in this study cannot be compensated.

Contacts:

If you have questions about your rights as a research volunteer, you may contact:

James Cain, Principal Investigator, 107 Gene Taylor National Free Enterprise
Center, Bolivar, MO 65613, 417-328-1680 or jcain@sbuniv.edu

Dr. John Murphy, SBU RRB Chair, Wheeler Science Center, Bolivar, MO
65613, 417-328-1494 or jmurphy@sbuniv.edu

Dr. Shelia Kennison, OSU IRB Chair, 219 Cordell North, Stillwater, OK 74078,
405-744-3377 or irb@okstate.edu

www.manaraa.com

97

Dr. Blayne Mayfield, Advisor, 100 Telecom Center, Stillwater, OK 74078, 405-
744-3471 or bem@cs.okstate.edu

Participant Rights:

Your participation in this is voluntary. You may withdraw from participation in
the pre-test and/or the post-test at any time prior to turning in the test in question
without any penalty or fear of reprisal. Returning your completed test indicates
your willingness to participate in this research.

THIS PROJECT HAS BEEN REVIEWED BY THE SOUTHWEST BAPTIST UNIVERSITY
RESEARCH REVIEW BOARD FOR RESEARCH AND RESEARCH-RELATED
ACTIVITIES INVOLVING HUMAN SUBJECTS (417) 326-1659.

www.manaraa.com

98

Appendix C: Survey Instrument

For the first six questions, circle the one best answer to each question.

1. What is wrong with the program shown below?

 A. Incorrect execution privilege level; program should not be run with
administrative access to the entire system.

 B. Internet Explorer 6 has security updates available that have not yet been installed
but should be installed.

 C. Internet Explorer 6 is obsolete and should be replaced with Internet Explorer 7 or
8.

 D. Information leakage.

 E. None of the above.

2. Sensitive data does not have to be encrypted if it is stored in a private account on a
computer with up-to-date operating system, anti-virus, anti-spyware, and firewall
software.

 A. True.

 B. False.

3. Which is the greater risk:

 A. A weak password.

 B. A strong password taped to the bottom side of the keyboard.

4. Can the java.util.Random class produce cryptographically strong random
sequences?

 A. Yes.

www.manaraa.com

99

 B. Yes, if the seed can be kept secret.

 C. Yes, if the seed can be kept secret and the attacker can never sample the
generated sequence.

 D. No.

5. Can "home-grown" cryptographic systems provide excellent security through their
obscurity?

 A. Normally, yes.

 B. Normally, yes, if their keys and codebooks can be kept secure.

 C. Normally, yes, if their keys, codebooks, source code, and byte code can be kept
secure.

 D. Possibly, but not normally.

6. Use cases should be created for:

 A. Every theoretically allowable use of the program.

 B. Every theoretically possible use of the program.

 C. Every realistically allowable use of the program.

 D. Every realistically possible use of the program.

For all remaining questions, circle all correct answers. There may be more than one correct
answer for some questions. All java methods should be assumed to be in properly
constructed classes with any required java libraries properly imported. The code provided
does not contain comments because this is a test of code comprehension. Ignore issues of
code style and focus on issues of code correctness.

7. Where in the software development process should code-defect risk analysis be
performed?

 A. Stage 1: Problem Analysis and Use Case Design.

 B. Stage 2: Architectural and Algorithm Design.

 C. Stage 3: Code Implementation.

 D. Stage 4: Testing.

 E. Stage 5: Deployment.

 F. Stage 6: Maintenance.

www.manaraa.com

100

8. Risk-based testing should be:

 A. Planned prior to coding.

 B. Performed regularly throughout project deployment and maintenance.

 C. More reliable than penetration testing.

 D. A valid substituted for penetration testing.

 E. None of the above.

9. Penetration testing:

 A. Requires expert hacking skills.

 B. Is best performed by hackers.

 C. Is better at finding security flaws than risk-based testing.

 D. None of the above.

10. What is the purpose of a code review?

 A. Keeping the team moving along the established timeline and insuring the
waypoint production objectives are achieved.

 B. Verifying the code adheres to the design plans.

 C. Keeping the entire project team appraised on what others are doing on the
project.

 D. Finding and fixing bugs.

 E. None of the above.

11. Are Java programs vulnerable to command injection attacks?

 A. No, because Java programs are compiled prior to execution.

 B. No, because Java programs are not interpreted but rather are run on a virtual
machine.

 C. Yes, if they compile any code into byte code during their own execution.

 D. Yes, if they bring extra classes into execution at the same time on the same
virtual machine.

 E. Yes, if user-specified data is sent to be interpreted by the operating system, the
shell, or any interpreters.

www.manaraa.com

101

12. Are Java programs vulnerable to format string attacks?

 A. Yes, if the code that translated the Java source code into Java byte code was
written in a C-family language.

 B. Yes, if the Java Virtual Machine running the Java byte code was written in a C-
family language.

 C. Yes, if the operating system was written in a C-family language.

 D. No.

13. Indicate which problem(s) exist in the BubbleSort method.

 A. Numeric overflow or underflow.

 B. Exception not caught or thrown.

 C. Ignored return value.

 D. Race condition.

 E. Failure to protect stored data.

 F. No problems exist in this code.

public boolean BubbleSort (int [] data)
{
 if (data != null)
 {
 for (int j = 0; j < data.length; j++)
 {
 for (int k = 0; k < (data.length - 1); k++)
 {
 if (data [k] < data [k + 1])
 {
 int temp = data [k];
 data [k] = data [k + 1];
 data [k + 1] = temp;
 }
 }
 }
 return true;
 }
 else
 {
 return false;
 }
}
14. Correct any problem(s) in the BubbleSort method.

www.manaraa.com

102

15. Indicate which problem(s) exist in the SearchForAllMatches method. Assume that

the BubbleSort method called in this problem is the one from problem 13.

 A. Numeric overflow or underflow.

 B. Exception not caught or thrown.

 C. Ignored return value.

 D. Race condition.

 E. Failure to protect stored data.

 F. No problems exist in this code.

public void SearchForAllMatches (int [] data, int target)
{
 BubbleSort (data);
 for (int j = 0; j < data.length; j++)
 {
 if (data [j] == target)
 {
 System.out.print ("Value " + target);
 System.out.println (" found at array location " + j);
 }
 }
}

16. Correct any problem(s) in the SearchForAllMatches method.

www.manaraa.com

103

17. Indicate which problem(s) exist in the Tally method and class data member. Assume

that the class it is in extends the Thread class.

 A. Numeric overflow or underflow.

 B. Exception not caught or thrown.

 C. Ignored return value.

 D. Race condition.

 E. Failure to protect stored data.

 F. No problems exist in this code.

public static int total;
public int Tally (int update)
{
 total = total + update;
 return total;
}

18. Correct any problem(s) in the Tally method and class data member.

www.manaraa.com

104

Appendix D: Course Syllabus

CIS 2953 (Special Topics: Secure Software)

Required Text:
Howard, M., LeBlanc, D., Viega, J., 24 Deadly Sins of Software Security, New York, NY:
McGraw-Hill/Osborne, 2009. ISBN 978-0-07-162675-0

Recommended Text: (on reserve in the SBU Library)
McGraw, G., Software Security: Building Security In, Upper Saddle River, NJ: Addison-Wesley,
2006. ISBN 978-0-321-35670-3

Description:
A study of the most common security flaws in modern computer programs. Students will develop
and refine secure programming techniques through correcting flaws in example programs and
creation of their own secure programs.

Prerequisite:
A student is required to have completed Computer Science I.

TENTATIVE COURSE SCHEDULE
Week Main Lecture Topics Required Text Recom. Text Assignments
1/24 “The Security Problem” Chapter 1 Pre-Test
1/31 Overflow & Underflow Chapter 7 Chapter 4 Prog. 1 assigned
2/7 Exceptions Chapter 9
2/14 Errors Chapter 11 Prog. 1 due, Prog. 2 assigned
2/21 Usability Chapter 14 Chapter 5
2/28 Information Leakage Chapter 12 Prog. 2 due, Prog. 3 assigned
3/7 Data Protection Chapter 17
3/14 Buffers Chapter 5 Chapter 8 Prog. 3 due, Prog. 4 assigned
3/21 Strings Chapter 6 Midterm Exam
4/4 Command Injection Chapter 10
4/11 Race Conditions Chapter 13 Chapter 7 Prog. 4 due, Prog. 5 assigned
4/18 Privilege Chapter 16
4/25 Passwords Chapter 19
5/2 Random Numbers Chapter 20 Chapter 6 Prog. 5 due, Prog. 6 assigned
5/9 Cryptography Chapter 21 Post-Test
5/16 Final Review FINAL EXAM & Prog. 6 due

www.manaraa.com

105

Course Goals:
Students who successfully complete this course will:
• Know the importance of security in modern computer systems.
• Understand that buggy code is exploitable code.
• Be familiar with 14 of the 24 most common categories of security-related programming

flaws.
• Be able to spot instances of these 14 categories of flaws in existing Java programs and be

able to fix them.
• Be able to write Java programs that do not contain instances of these 14 categories of

flaws.

Organization:
• There will be three lecture periods of 50 minutes each per week.
• There will be 6 Java programming assignments.
• There will be 1 midterm exam and 1 comprehensive final exam.
• There will be 1 pre-test and 1 post-test.

Class Grading:
The grades for this course will be based on the following percentage breakdown:
• 60% Programs
• 20% Midterm Exam
• 20% Final Exam
• 0% Pre-Test
• 0% Post-Test

Grading Scale:
Course grades will be determined by the following scale:
 A 90% or greater
 B between 80% and 90%
 C between 70% and 80%
 D between 60% and 70%
 F below 60%

Program Submission:
Students are required to submit their source code for grading. Assignments submitted in
executable form without source code will receive zero credit. Programs that fail to compile on
the Taylor 221 lab machines will also receive zero credit.

Program Code Authoring:
Students are responsible for writing their own code. Using another individual's code without the
prior consent of their professor, even when properly credited to the original author, will be
considered to be plagiarism. Co-authoring of code with another individual will also be
considered plagiarism. Students experiencing difficulty with coding assignments are directed to
consult their professor for appropriate assistance.

www.manaraa.com

106

Program 1:
Write a Java program that will accept integers from the command line, add them up, and print out
their total to the screen. Make sure your code gets the correct total in light of potential arithmetic
overflow and underflow.

Program 2:
Write a Java program that will accept integers from the command line, add them up, and print out
their total to the screen. Make sure your code gets the correct total in light of potential arithmetic
overflow and underflow. Make sure your code cannot be crashed due to any particular command
line parameters, including non-integer values.

Program 3:
Correct the information leakage problem(s) in the Java code provided. Correct any other
problems in the code and make sure your code cannot be crashed by any particular choices of
user input, including obviously erroneous input.

Program 4:
Correct the buffer overflow problem(s) in the Java code provided. Correct any other problems in
the code and make sure your code cannot be crashed by any particular choices of user input,
including obviously erroneous input.

Program 5:
Correct the race condition problem(s) in the Java code provided. Correct any other problems in
the code and make sure your code cannot be crashed by any particular choices of user input,
including obviously erroneous input.

Program 6:
Write a Java class that will perform a XOR cipher encryption. In addition to a constructor and
any other methods you need, your class should contain an Encrypt method and a Decrypt
method. The Encrypt and Decrypt methods should each accept a single String class object
parameter and should each return a String class object. Make sure your code cannot be crashed
no matter what parameters are passed into your methods.

www.manaraa.com

107

Appendix E: Revised Course Schedule

REVISED COURSE SCHEDULE
Week Main Lecture Topics Required Text Recom. Text Assignments
1/24 “The Security Problem” Chapter 1 Pre-Test
1/31 Overflow & Underflow Chapter 7 Chapter 4 Prog. 1 assigned
2/7 Exceptions & Errors Chapter 9 & 11 Chapter 5
2/14 Prog. 1 Code Review Prog. 1 due, Prog. 2 assigned
2/21 Usability & Leakage Chapt. 12 & 14
2/28 Prog. 2 Code Review Chapter 12 Prog. 2 due, Prog. 3 assigned
3/7 Data Protection Chapter 17
3/14 Buffers & Prog. 3 Chapter 5 Chapter 8 Prog. 3 due, Prog. 4 assigned
 Code Review
3/21 Strings Chapter 6 Midterm Exam
4/4 Race Conditions Chapter 13 Chapter 7
4/11 Command Injection & Chapter 10 Prog. 4 due, Prog. 5 assigned
 Prog. 4 Code Review
4/18 Privilege Chapter 16
4/25 Random Numbers Chapter 20
5/2 Cryptography & Chapter 21 Chapter 6 Prog. 5 due, Prog. 6 assigned
 Prog. 5 Code Review
5/9 Passwords Chapter 19 Post-Test
5/16 Final Review FINAL EXAM & Prog. 6 due

www.manaraa.com

108

Appendix F: Program 3 Starter Code

// Program 3 starter code
// Starter Code By: James Cain (jcain@sbuniv.edu)
// This is the required starter code for this assignment.
// Assignment Description:
// Read the following Java API descriptions:
// java.sun.com/javase/7/docs/api/java/util/Random.html
// java.sun.com/javase/7/docs/api/java/io/File.html
// java.sun.com/javase/7/docs/api/java/util/Scanner.html
// java.sun.com/javase/7/docs/api/java/io/PrintStream.html
// java.sun.com/javase/7/docs/api/java/lang/String.html
// java.sun.com/javase/7/docs/api/java/lang/Math.html
// Correct the information leakage problem(s) in the Java code
// provided. Correct any other problems in the code and make
// sure your code cannot be crashed by any particular choices of
// user input, including obviously erroneous input.
// Algorithmic Description:
// Whoever wrote this program should have told you what it does.
// If you really cannot understand what this code does and
// therefore cannot do the assignment, ask your professor to
// explain it to you and he will.
// Last comment: Don't you wish this wasn't the last comment?

import java.util.Random;
import java.io.File;
import java.util.Scanner;
import java.io.PrintStream;
import java.lang.Math;

public class cis2953sp10p3 {

public static void main (String [] args) throws Exception{
 Random rand = new Random();
 File infile = new File (args [0]);
 File outfile = new File ("PasswordList.txt");
 Scanner kbd = new Scanner (System.in);
 Scanner Infile = new Scanner (infile);
 PrintStream Outfile = new PrintStream (outfile);
 String uppers = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 String lowers = "abcdefghijklmnopqrstuvwxyz";
 String digits = "0123456789";
 String symbols = "`~!$%^&*()_+{}|:<>?/.,';][=-";
 String total = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
 "abcdefghijklmnopqrstuvwxyz" +
 "0123456789`~!$%^&*()_+{}|:<>?/.,';][=-";
 outfile.setReadable (true, true);
 System.out.print ("Minumum uppercase: ");
 int Uppers = kbd.nextInt ();
 System.out.print ("Minumum lowercase: ");
 int Lowers = kbd.nextInt ();

www.manaraa.com

109

 System.out.print ("Minumum digits: ");
 int Digits = kbd.nextInt ();
 System.out.print ("Minumum symbols: ");
 int Symbols = kbd.nextInt ();
 System.out.print ("Minumum total characters: ");
 int Total = kbd.nextInt ();
 char [] password = new char [Total];
 String user;
 int i,j,k;
 char temp;
 while (Infile.hasNext()) {
 user = Infile.next();
 for (i = 0; i < Uppers; i ++) {
 password [i] = uppers.charAt (Math.abs (
 rand.nextInt ()) % 26);
 }
 for (i = Uppers; i < (Uppers + Lowers); i ++) {
 password [i] = lowers.charAt (Math.abs (
 rand.nextInt ()) % 26);
 }
 for (i = Uppers + Lowers;
 i < (Uppers + Lowers + Digits); i ++) {
 password [i] = digits.charAt (Math.abs (
 rand.nextInt ()) % 10);
 }
 for (i = Uppers + Lowers + Digits;
 i < (Uppers + Lowers + Digits + Symbols); i ++) {
 password [i] = symbols.charAt (Math.abs (
 rand.nextInt ()) % 26);
 }
 for (i = Uppers + Lowers + Digits + Symbols;
 i < Total; i ++) {
 password [i] = total.charAt (Math.abs (
 rand.nextInt ()) % 88);
 }
 for (i = 0; i < 1000; i ++) {
 j = Math.abs (rand.nextInt ()) % Total;
 k = Math.abs (rand.nextInt ()) % Total;
 temp = password [j];
 password [j] = password [k];
 password [k] = temp;
 }
 System.out.println (user + " " +
 (new String (password)));
 Outfile.println (user + " " + (new String (password)));
 }
}
}

www.manaraa.com

110

Appendix G: Program 4 Starter Code

// Program 4 starter code
// Starter Code By: James Cain (jcain@sbuniv.edu)
// This is the required starter code for this assignment.
// Correct the buffer overflow problem(s) in the Java code
// provided. Correct any other problems in the code and make
// sure your code cannot be crashed by any particular choices of
// user input, including obviously erroneous input.
// Do not simply replace all of the character arrays with Java
// Strings. Furthermore, you are not permitted to use Java
// Strings anywhere in this assignment.
// Create a main method to test your code.

public class cis2953sp10p4 {

public char [] strcat (char [] destination, char [] source) {
// This method concatenates the null-character terminated
// characters within the destination character array with the
// characters from the null-character terminated characters in
// the source character array and returns the destination
// character array. The behavior is exactly like the behavior of
// the C-language function "strcat". By correcting this code,
// the student should gain an understanding of exactly what
// C-language does wrong in the function "strcat" and similar
// functions in the string.h and stdio.h libraries.

 // Find the integer value i such that the i-th character
 // of the destination array is the first null character
 int i = 0;
 while (destination [i] != '\0') {
 i++;
 } // while (destination [i] != '\0') {...
 // Copy the source array into the destination array,
 // overwriting the existing characters beginning at the
 // first null character within the destination array
 int j = 0;
 while (source [j] != '\0') {
 destination [i] = source [j];
 i++;
 j++;
 } // while (source [j] != '\0') {...
 // Null-terminate the destination array after the last
 // character concatenated into it from the source array
 destination [i] = '\0';
 // Return the destination array
 return destination;
} // public char [] strcat (char [] destination,
 // char [] source) {...
} // public class cis2953sp10p4 {...

www.manaraa.com

111

Appendix H: Program 5 Starter Code

// Program 5 starter code
// Starter Code By: James Cain (jcain@sbuniv.edu)
// This is the required starter code for this assignment.

// Correct the race condition problem(s) in the Java code
// provided. Correct any other problems in the code and make sure
// your code cannot be crashed by any particular choices of user
// input, including obviously erroneous input.

public class RetirementAccount {
 private float Balance;
 private float InterestRate;

 public RetirementAccount () {
 Balance = (float) 0;
 InterestRate = (float) 0;
 } // public RetirementAccount () {...

 public float GetBalance () {
 return Balance;
 } // public float GetBalance () {...

 public float GetRate () {
 return InterestRate;
 } // public float GetRate () {...

 public void Debit (float Amount) {
 Balance = Balance - Amount;
 } // public void Debit (float Amount) {...

 public void Credit (float Amount) {
 Balance = Balance + Amount;
 } // public void Credit (float Amount) {...

 public void ApplyFee (float Amount) {
 Balance = Balance - Amount;
 } // public void ApplyFee (float Amount) {...

 public void ApplyInterest () {
 Balance = Balance + (Balance * InterestRate);
 } // public void ApplyInterest () {...

 public void SetRate (float Rate) {
 InterestRate = Rate;
 } // public void SetRate (float Rate) {...
} // public class RetirementAccount {...

www.manaraa.com

112

Appendix I: Survey Data

The tables in Appendix I are laid out with a numbered list of subjects corresponding to the

columns and the possible multiple choice answers and coding problem numbers corresponding to

the rows. Each possible multiple choice answer is recorded as either selected (denoted 1) or not

selected (denoted 0). Coding problems 14, 16, and 18 are recorded as either correct (denoted 1)

or incorrect (denoted 0). Problems 16* and 18* are coding problems 16 and 18 rerecorded as

either having any appairent attempt to do the problem (denoted 1) or not having any appairent

attempt to do the problem (denoted 0).

Tables I.1 and I.3 are numbered to show the pairing for control subjects that took both the pre-test

and the post-test. Likewise, tables I.2 and I.4 are numbered to show the pairing for test subjects

that took both the pre-test and the post-test. The answer key and the tests that could not be

properly paired beween pre-test and post-test are listed in table I.5. The columns in table I.5 are

labeled for the answer key (denoted K, for “Key”), control subject pre-tests that could not be

paired with post-tests (denoted C, for “Control”), test subject pre-tests that could not be pair with

post-tests (denoted T, for “Test”), and post-tests that could not be paired with pre-tests (denoted

P, for “Post”).

www.manaraa.com

113

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1A 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
1B 0
1C 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
1D 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
1E 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0
2A 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
2B 1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1
3A 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0
3B 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 1 0 1 0 1
4A 0 0 1 0
4B 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
4C 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0 0
4D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
5A 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
5B 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1
5C 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
5D 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
6A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
6B 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1
6C 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6D 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
7A 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0
7B 0 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1
7C 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1
7D 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0
7E 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0
7F 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 1
8A 0 1 0 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 1
8B 1 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 0
8C 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0
8D 0
8E 0
9A 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
9B 0 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0
9C 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1
9D 0
10A 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
10B 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1
10C 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0
10D 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1
10E 0
11A 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
11B 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
11C 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1
11D 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0
11E 1 1 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0
12A 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 0 0
12B 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 0
12C 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
12D 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0
13A 0 1 0 0 0
13B 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
13C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
13E 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
13F 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1
14 1 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1

Table I.1 (part a) Pre-Test Control Subject Data

www.manaraa.com

114

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
15A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
15B 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
15C 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
15D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15E 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
15F 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1
16 0
17A 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17B 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17C 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17D 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17E 1 0 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
17F 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1
18 0
16* 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
18* 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

Table I.1 (part b) Pre-Test Control Subject Data

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1A 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1B 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1C 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1
1D 1 1 1 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0
1E 0
2A 0
2B 1
3A 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1
3B 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0
4A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
4B 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
4C 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0
4D 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
5A 0 1
5B 0
5C 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0
5D 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0
6A 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
6B 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0
6C 0
6D 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1
7A 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
7B 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1
7C 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1
7D 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1
7E 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1
7F 0 1 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1
8A 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
8B 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
8C 0
8D 0
8E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
9A 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9B 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0
9C 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
9D 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Table I.2 (part a) Pre-Test Test Subject Data

www.manaraa.com

115

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10A 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0
10B 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
10C 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 1
10D 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 1
10E 0
11A 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0
11B 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11C 1 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1
11D 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0
11E 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 1 1 0
12A 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0
12B 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1
12C 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
12D 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0
13A 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
13B 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1
13C 0 1
13D 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
13E 1 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
13F 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0
14 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 0
15A 0
15B 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
15C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
15D 0
15E 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
15F 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 0 0
16 0
17A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
17B 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
17C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
17D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
17E 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1
17F 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0
18 0
16* 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
18* 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

Table I.2 (part b) Pre-Test Test Subject Data

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1A 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0
1B 0 1 0
1C 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1
1D 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0
1E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2A 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
2B 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1
3A 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0
3B 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1
4A 0
4B 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
4C 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 0
4D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0
5A 0
5B 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1
5C 1 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 1 0
5D 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

Table I.3 (part a) Post-Test Control Subject Data

www.manaraa.com

116

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
6A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6B 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1
6C 0 0 1 0
6D 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0
7A 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0
7B 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1
7C 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1 0
7D 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0
7E 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0
7F 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0
8A 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1
8B 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0
8C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8D 0
8E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
9A 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
9B 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0
9C 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1
9D 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10A 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0
10B 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 1
10C 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0
10D 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0
10E 0
11A 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0
11B 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11C 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1
11D 0 0 0 1 1 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0
11E 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
12A 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0
12B 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1
12C 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
12D 1 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
13A 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0
13B 0 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
13C 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13D 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13E 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1
13F 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0
14 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0
15A 1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 1 0 0 0
15B 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
15C 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
15E 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1
15F 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0
16 0
17A 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17B 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17C 0
17D 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17E 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0
17F 0 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0 1
18 0
16* 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0
18* 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

Table I.3 (part b) Post-Test Control Subject Data

www.manaraa.com

117

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1A 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1B 0
1C 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1D 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0
1E 0
2A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
2B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
3A 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 0 1
3B 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0
4A 0
4B 0
4C 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 0 0
4D 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1
5A 0
5B 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5C 0 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0
5D 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0
6A 0
6B 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 0 0
6C 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
6D 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0
7A 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1
7B 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1
7C 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1
7D 1 0 1 1 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1
7E 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1
7F 1 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 1
8A 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 1
8B 1
8C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
8D 0
8E 0
9A 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0
9B 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1
9C 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
9D 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
10A 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0
10B 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1
10C 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1
10D 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10E 0
11A 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
11B 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
11C 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1
11D 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1
11E 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 0
12A 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
12B 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
12C 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
12D 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1
13A 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
13B 1 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 1
13C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
13D 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0
13E 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
13F 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0
14 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0

Table I.4 (part a) Post-Test Test Subject Data

www.manaraa.com

118

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
15A 0
15B 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1
15C 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
15D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15E 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0
15F 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
17A 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0
17B 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17C 0
17D 0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0
17E 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
17F 0 1
18 0
16* 1 1 1 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0
18* 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

Table I.4 (part b) Post-Test Test Subject Data

 K C C C C C C C T T P P P P P
1A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1B 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
1C 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0
1D 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1E 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
2A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
2B 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
3A 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0
3B 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1
4A 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
4B 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
4C 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1
4D 1 0 0 0 0 0 0 1 1 0 1 1 0 1 0
5A 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
5B 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
5C 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0
5D 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1
6A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6B 1 1 1 0 1 0 1 0 1 1 1 1 1 1 0
6C 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
6D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7A 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0
7B 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0
7C 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1
7D 1 1 0 1 1 1 0 1 0 1 1 0 1 1 1
7E 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
7F 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0
8A 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1
8B 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1
8C 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
8D 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
8E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9A 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0
9B 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1
9C 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0
9D 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table I.5 (part a) Answer Key and Unpaired Subject Data

www.manaraa.com

119

 K C C C C C C C T T P P P P P
10A 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0
10B 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
10C 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1
10D 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1
10E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11B 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
11C 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
11D 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0
11E 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0
12A 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1
12B 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0
12C 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0
12D 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0
13A 0 1 1 1 0 0 0 1 0 1 0 0 0 1 0
13B 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0
13C 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0
13D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13E 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0
13F 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
14 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1
15A 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
15B 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0
15C 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0
15D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
15E 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
15F 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17A 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
17B 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
17C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17D 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
17E 1 0 0 1 0 0 1 1 1 0 0 0 1 1 0
17F 0 1 0 0 1 1 0 0 0 1 1 1 0 0 0
18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16* 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0
18* 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0

Table I.5 (part b) Answer Key and Unpaired Subject Data

www.manaraa.com

VITA

James Francis Cain III

Candidate for the Degree of

Doctor of Philosophy

Thesis: COMPUTER SCIENCE EDUCATION: SECURE SOFTWARE

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Computer Science
at Oklahoma State University, Stillwater, Oklahoma in December, 2010.

Completed the requirements for the Master of Science in Computer Science at
University of Missouri – Rolla, Rolla, Missouri in 1999.

Completed the requirements for the Bachelor of Science in Electrical
Engineering at University of Missouri – Rolla, Rolla, Missouri in 1996.

Experience:

Southwest Baptist University, Bolivar, Missouri: Instructor, 1999 – 2008,

Assistant Professor, 2008 – present.

Professional Memberships:

ACM & ACM Special Interest Group on Computer Science Education
IEEE & IEEE Computer Society
National Society of Professional Engineers
Upsilon Pi Epsilon Computer Science Honor Society
Consortium for Computing Sciences in Colleges

Professional Meetings Attended:

ACM Technical Symposium on Computer Science Education 2001, 2005-2008
Consortium for Computing Sciences in Colleges, Central Plains Conference

2000-2002, 2006-2010

www.manaraa.com

ADVISER’S APPROVAL: Dr. Blayne E. Mayfield

Name: James Francis Cain III Date of Degree: December, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: COMPUTER SCIENCE EDUCATION: SECURE SOFTWARE

Pages in Study: 119 Candidate for the Degree of Doctor of Philosophy

Major Field: Computer Science

Scope and Method of Study: Computer Science Education Human Subject Research

Findings and Conclusions:

Computer security problems have been increasing significantly as the Internet has been
increasing the means to both access and to distribute both code and data. Attempts to
address these problems through computer science education by focusing on information
security, network security, and system security have not been entirely successful. The
security problems are serious enough at this time that both industry and academia are
looking for other solutions and even for other partial solutions. One of these proposed
partial solutions focuses the security investigations on the commonality that underlies all
software: code.

The author proposed that all computer science undergraduates should be required to take
a computer security course that focuses on code security early in their undergraduate
program. The objectives of this course would be to teach the importance of code
security, to instruct in practical coding techniques for making programs more secure, and
to provide practice in these secure coding techniques.

The author has taught an introductory security course with emphasis in code security over
the course of one semester during this research project. The students in the course ranged
from second semester freshman, straight out of Computer Science I, to seniors graduating
at the end of that semester. While results from the pre-test and post-test surveys
completed by course subjects were mixed, they suggested that the course was at least
partially successful. The students did seem to have a better understanding of computer
security but seem to have not improved as much within the area of secure coding as the
author had anticipated. The author feels that more repetition and feedback on the writing
of secure code will improve the course the next time it is offered.

The author believes these proposals are not a perfect solution for the present computer
security problem. However, the author does believe that these proposals are a valid
partial solution.

